Direct proof strategy: define a specific yes and prove \(P(y) \) holds.

Ex: 1- Propin There exists an even integer \(n \in \mathbb{N} \) that can be written as the sum of two primes in two distinct ways.

Pf: Consider \(n = 10 \). Then \(n \) is even and moreover \(10 = 5 + 5 = 7 + 3 \). Since \(3, 5, 7 \) are prime, the claim is proved. (Note: \(24 = 19 + 5 = 17 + 7 \) works too.)

Indirect proof strategy: Assume \(\neg(\exists x \in \mathbb{N}) P(x) \) (equiv. \(\forall x \in \mathbb{N} \neg P(x) \)) and derive a contradiction.

Ex: 2- Fix \(n \in \mathbb{N} \) and \(a_1, \ldots, a_n \in \mathbb{R} \). Then there is a \(k \in \{1, 2, \ldots, n\} \) s.t. \(a_k \) is at least as large as the average (mean) of \(a_1, \ldots, a_n \), i.e.:
\[
(\exists k \in \{1, 2, \ldots, n\})(a_k \geq \frac{1}{n}(a_1 + a_2 + \ldots + a_k))
\]
Proof: -Suppose, toward a contradiction.
- That is, suppose that

\[(\forall k \in \mathbb{N})(a_k < \frac{1}{n}(a_1 + \ldots + a_n))\]

- For simplicity, let \(s = a_1 + a_2 + \ldots + a_n \)

- So our assumption is: \((\forall k \in \mathbb{N})(a_k < \frac{s}{n})\)

- But then:

\[s = a_1 + a_2 + \ldots + a_n \quad \text{(defn of } s)\]

\[< \frac{s}{n} + \frac{s}{n} + \ldots + \frac{s}{n}\]

\[= n \cdot \frac{s}{n} = s \quad \text{(by our assumption)}\]

This shows \(s < s \), a contradiction.
Hence our assumption was false, and so the proposition is true.

Universal Claims
General Form: \((\forall x \in S) P(x)\)
Direct strategy: - Let \(x \in \mathbb{R} \) be arbitrary but fixed. Prove \(P(x) \).

Ex: 0 Prop'n \((\forall x, y \in \mathbb{R}) (xy \leq \left(\frac{x+y}{2} \right)^2) \)

Pf: - Fix \(x, y \in \mathbb{R} \).
- then: \((x-y)^2 \geq 0 \) (square always \(\geq 0 \))
- i.e. \(x^2 - 2xy + y^2 \geq 0 \)
\[\Rightarrow x^2 + y^2 \geq 2xy \]
\[\Rightarrow x^2 + 2xy + y^2 \geq 4xy \]
- i.e. \((x+y)^2 \geq 4xy \)
\[\Rightarrow \frac{(x+y)^2}{4} \geq xy \]
\[\Rightarrow \left(\frac{x+y}{2} \right)^2 \geq xy \], as desired.

Since \(x, y \in \mathbb{R} \) were arbitrary the claim is proved. \(\checkmark \)

Aside: prop'n is one version of the "AM - GM" inequality.
- arithmetic mean (AM) of \(xy \) is \(\frac{x+y}{2} \)
- geometric mean (GM) of \(xy \) is \(\sqrt{xy} \)
The problem says (for \(x, y > 0 \)) that
\[
\sqrt{xy} \leq \frac{x+y}{2},
\]
i.e. GM \(\leq \) AM.

Indirect strategy: Assume \(\neg (\exists x, s.t. P(x)) \)
(equiv: \(\neg (\exists x, \neg P(x)) \)) and derive a contradiction.

Ex: \(\sqrt{2} \) is irrational, then \(u: \)
\[
(\forall a, b \in \mathbb{Z})(\frac{a}{b} \neq \sqrt{2})
\]

Pf: -Suppose not, then \(u, s.p.s \in \mathbb{Z} \)
\[
\text{s.t. } \frac{a}{b} = \sqrt{2}
\]
- We may assume \(a, b \) share no common factors, since if they did
we could cancel them factors to
get \(a', b' \in \mathbb{Z} \) without common factors.
s.t. \(\frac{a'}{b'} = \sqrt{2} \).

Now: \(-\sin a \frac{a}{b} = \sqrt{2}\)

we have \(a = \sqrt{2}b \)

\(\Rightarrow a^2 = 2b^2 \)

hence \(a^2 \) is even. It follows that \(a \) is even (why?)

- hence \(\exists k \in \mathbb{Z} \) s.t. \(a = 2k \)
- then \(a^2 = 4k^2 \)
- giving \(2b^2 = 4k^2 \)
- hence \(b^2 = 2k^2 \)
- we now see that \(b^2 \), and hence \(b \), is also even.
- so both \(a, b \) are even: hence they share a factor of 2
- a contradiction as \(a, b \) share no common factors!
- the proof follows.
Conditional Claim

General Form: \(P \Rightarrow Q \)

Three strat\(t \):

1. **Direct**: Assume \(P \)
 holds, Prove \(Q \)

2. **Contra-positive**: Prove \(\neg Q \Rightarrow \neg P \)
 i.e. assume \(\neg Q \) and prove \(\neg P \)

3. **Indirect**: Assume \(\neg (P \Rightarrow Q) \)
 (equiv: \(P \land \neg Q \)) and derive contradiction

2 and 3 often similar in practice

Ex 1 (Direct) \(\mathbb{W} \): \(O = \{-\ldots,-5,-3,-1,1,3,5,\ldots\} \)

denote the set of all odd integers.

Prop'n \((\forall n \in \mathbb{Z}) \left(n \in O \Rightarrow n^2 - 1 \text{ is divisible by } 4 \right) \)

i.e. \((\forall n \in \mathbb{Z}) \left(n \in O \Rightarrow (\exists k \in \mathbb{Z}) \left(n^2 - 1 = 4k \right) \right) \)

Pf: (overall this is a universal claim, so we begin as usual)

- Fix \(n \in \mathbb{Z} \)
 (now we deal w/ the conditional)
- Assume $n \neq 0$.
 (allowed to do this since if $n \neq 0$
 the conditional claim holds vacuously)
- hence $\exists k \epsilon \mathbb{Z}$ s.t. $n = 2k+1$.
- hence $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$
 $\implies n^2 - 1 = 4k^2 + 4k$
 $= 4(k^2 + k)$
 $= 4M$ (where $M = k^2 + k$)
- hence $n^2 - 1$ is divisible by 4.
- since $n \epsilon \mathbb{Z}$ was arbitrary, the
 claim is proved. \checkmark

$\text{Ex}\, \oplus (\text{contrapositive}). \ W.E = \{-\ldots, -4, -2, 0, 2, 4, \ldots\}$

$\text{Propn} \ (\forall m, n \epsilon \mathbb{Z}) \ (m \epsilon E \implies (m \epsilon E) \lor (n \epsilon E))$

$\text{Pf.} \ - \ \text{fix } m, n \epsilon \mathbb{Z}$
 (we argue the contrapositive by contrapositive)
- assume $\neg (m \epsilon E \lor n \epsilon E)$
 i.e. $m \notin E \land n \notin E$.
- then m, n are both odd, i.e.
 $\exists k, l \epsilon \mathbb{Z}$ s.t. $m = 2k+1$
 $n = 2l+1$
\[mn = (2k+1)(2l+1) \]
\[= 4kl + 2k + 2l + 1 \]
\[= 2(2kl + k + l) + 1 \]
\[= 2N + 1 \quad \text{(where } N = 2kl + k + l) \]

- hence \(mn \) is odd, i.e. \(mn \notin \mathbb{E} \).

- we're proved
 \((m \notin \mathbb{E} \lor n \notin \mathbb{E}) \Rightarrow mn \notin \mathbb{E} \)
 i.e. \(\neg (m \in \mathbb{E} \lor n \in \mathbb{E}) \Rightarrow \neg (mn \in \mathbb{E}) \)

- by contrapositive we've proved
 \(mn \in \mathbb{E} \Rightarrow m \in \mathbb{E} \lor n \in \mathbb{E} \)

- since \(m, n \in \mathbb{Z} \) were arbitrary, claim is proved

Ex 3 (Indirect)

Prop'n \(\forall x \in \mathbb{R} \left(x > 0 \Rightarrow x + \frac{1}{x} \geq 2 \right) \)

Pf:
- fix \(x \in \mathbb{R} \)
- suppose \(x > 0 \) but \(x + \frac{1}{x} < 2 \)
- \(\neg Q \)

\[\Rightarrow x^2 + 1 < 2x \quad \text{(inequality doesn't flip since } x > 0) \]
\[x^2 - 2x + 1 < 0 \]
\[\Rightarrow (x-1)^2 < 0. \]

- a contradiction, as squares are always \(\geq 0 \).

- hence we must have

\[x > 0 \Rightarrow x + \frac{1}{x} \geq 2. \]

- since \(x \) was arbitrary, claim is proved.

Biconditional Claims

General Form: \(P \iff Q \)

Strategy: Prove \(P \Rightarrow Q \) and \(Q \Rightarrow P \)

Ex: Prep'n An integer \(n \) is even iff its square is even, i.e.

\[(\forall n \in \mathbb{Z}) (n \in E \iff n^2 \in E) \]

Pf: - fix \(n \in \mathbb{Z} \)

\[(\Rightarrow) - \text{Assume } n \in E \]

- then \(\exists k \in \mathbb{Z} \) s.t. \(n = 2k \)
- Then \(n^2 = 4k^2 \)
 \[= 2(2k^2) \]
 \[= 2M \quad \text{(where } M = 2k^2) \]

- Hence \(n^2 \) is even, i.e. \(n \in E. \checkmark \)

(\(\Leftarrow \)) To prove \(n^2 \in E \Rightarrow n \in E \) we show the contrapositive: \(n \notin E \Rightarrow n^2 \notin E \).

- So suppose \(n \notin E \).

- Then \(n \) is odd, i.e. \(\exists k \in \mathbb{Z} \) s.t. \(n = 2k + 1 \)

- Hence \(n^2 = (2k + 1)^2 \)
 \[= 4k^2 + 4k + 1 \]
 \[= 2(2k^2 + 2k) + 1 \]
 \[= 2N + 1 \quad \text{(where } N = 2k^2 + 2k) \]

- Hence \(n^2 \) is odd, so \(n^2 \notin E \).

- We've shown (by contrapositive) \(n^2 \notin E \Rightarrow n \notin E \).

Thus: \(n \in E \Leftrightarrow n^2 \in E \)

- Since \(n \) was arbitrary, premise \(n \) was proved \(\checkmark \).