A \cap B = \{x \in U \mid (x \in A) \land (x \in B)\}
A \cup B = \{x \in U \mid (x \in A) \lor (x \in B)\}
\overline{A} = \{x \in U \mid \neg (x \in A)\}

-equiv to writing “x \notin A”

— we’ll explore connections between connectives and set operations more later.

Implication

Given statements P, Q, the statement \(P \implies Q \) is read “if P, then Q” or “P implies Q”.

\(P \implies Q \) is true if whenever \(P \) is true, \(Q \) is also true.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \implies Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Notice: \(\neg P \implies Q \) is always true when \(P \) is false (often a confusing point) - \(P \implies Q \) only false when \(P \) is true and \(Q \) is false.
- statements of the form \(P \Rightarrow Q \) are called “conditional statements.”

Ex.

1. “\((1+1=2) \Rightarrow (1+1+1=3)\)” is true
 \[
 \begin{array}{c|c}
 P & Q \\
 \hline
 T & T \\

 \end{array}
 \]

2. “\((1+1=2) \Rightarrow (1+1+1=4)\)” is false
 \[
 \begin{array}{c|c}
 P & Q \\
 \hline
 T & T \\

 \end{array}
 \]

3. “\((1+1=2) \Rightarrow (\sqrt{2} \notin N)\)” is true even though \(P, Q \) in this example are apparently unrelated statements.

4. “My name is Sally \(\Rightarrow \) My name begins with S” is true
 (both premise \(P \) and conclusion \(Q \) are false, therefore (by def'inition) \(P \Rightarrow Q \) is true ("false \Rightarrow false" is \(T \))

5. “Tomorrow \(\Rightarrow \) Sunday” \(\Rightarrow \) My name is Gorrell” is also true
 ("false \Rightarrow true" is \(T \))
6. \((\exists x \in \mathbb{R})(x^2 = -1) \implies (1 + 1 = 3)\)

is true: automatically since premise is false, though unrelated to conclusion.

7. Can also use \(\implies\) in var. propn:

- e.g. \(x \geq 2 \implies x^2 \geq 4\)

is a var. propn and

\((\forall x \in \mathbb{R})(x \geq 2 \implies x^2 \geq 4)\)

is a true statement, since

for every \(x \in \mathbb{R}\)

- either \(x \geq 2\) is true, in which case \(x^2 \geq 4\) is also true, and "true \(\implies\) true" is true

or \(x < 2\) is false, in which case \(x \geq 2 \implies x^2 \geq 4\) is true automatically.

i.e. for every \(x \in \mathbb{R}\), "\((x \geq 2) \implies (x^2 \geq 4)\)" is (T), i.e. \((\forall x \in \mathbb{R})(x \geq 2 \implies x^2 \geq 4)\) is (T).
8. \((\forall x \in \mathbb{R}) (x^2 \geq 4 \Rightarrow x \geq 2) \) is false since there is a real number \(x \) (e.g. \(x = -3 \)) s.t. \(x^2 \geq 4 \) but \(x \geq 2 \) is false.

Equivalence

Given statements \(P, Q \), the statement \(P \iff Q \) (read: "\(P \) if and only if \(Q \)")

is true if \(P \), \(Q \) have the same truth values.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \iff Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Examples

1. \((1 + 1 = 2) \iff (1 + 1 = 3) \) is (F)
2. \((1 + 1 = 3) \iff (1 + 1 = 4) \) is (T)
3. \((\forall x \in \mathbb{N})(n > 0) \iff (1 + 1 = 2) \) is (T)
4. \((1 + 1 = 2) \iff (2 + 2 = 5) \) is (F)

Can also use \(\equiv \) in var prop'n, e.g.

\[(x > 0) \equiv (\exists y \in \mathbb{R})(y^2 = x) \]

is a legit var. prop'n
and \((\forall x \in \mathbb{R})[(x > 0) \iff (\exists y \in \mathbb{R})(y^2 = x)]\) is a true statement, since:

for every \(x \in \mathbb{R}\) the statements
\(x > 0\) and
\((\exists y \in \mathbb{R})(y^2 = x)\) are either both true or both false.

Defin statements \(P, Q\) are said to be logically equivalent if they have the same truth value, i.e.

\[\text{iff } P \iff Q \text{ is true.}\]

- e.g. \(1 + 1 = 2\) and \(1 + 1 + 1 = 3\) are logically equiv.

- will be most interested in logically equivalent forms for
connected (esp. negated) and
quantified statements.

Negating Quantified statements

- SPS \(P(x)\) is a variable prop'n
and \(S\) is a set.
Consider the negated statements:

1. \(\neg (\forall x \in S) P(x) \)
2. \(\neg (\exists x \in S) P(x) \)

Observe:
1. is true iff there is no \(x \in S \) s.t. \(P(x) \) is false, i.e. iff
 \((\exists x \in S) \neg P(x) \) is true
2. is true iff for all \(x \in S \) we have \(P(x) \) is false, i.e.
 \((\forall x \in S) \neg P(x) \) is true.

This shows:
\[\neg (\forall x \in S) P(x) \iff (\exists x \in S) \neg P(x) \]

is always true (regardless of \(P(x) \)), i.e. that \(\neg (\forall x \in S) P(x) \) and \((\exists x \in S) \neg P(x) \) are logically equivalent.

Likewise,
\[\neg (\exists x \in S) P(x) \text{ and } (\forall x \in S) \neg P(x) \]
are logically equivalent.
these equivalences often useful
when trying to prove quantified
statements by contradiction.

\[\neg (\forall x \in \mathbb{R}) (x \in \mathbb{N}) \]

is equiv. to

\[(\exists x \in \mathbb{R}) \neg (x \in \mathbb{N}) \]

both are (T)

\[\text{note: we'll often write } \neg (x \in \mathbb{N}) \]
\[\text{as } x \notin \mathbb{N}, \quad \neg (x = y) \Rightarrow x \neq y, \text{ etc.} \]

2 \[\neg (\exists x \in \mathbb{R}) (x + 1 = 0) \]
is equiv. to

\[(\forall x \in \mathbb{R}) (x + 1 \neq 0) \]

(both (F))

3 For multiple quantifiers, iterate
the process:

\[\neg (\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) (xy = 1) \rightarrow \text{ "not every real has a mult. imurr"} \]

equiv. to:

\[(\exists x \in \mathbb{R}) \neg (\exists y \in \mathbb{R}) (xy = 1) \]

also:

\[(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}) (xy \neq 1) \]
(both are (T):
O has no multiplicative inverse)

"there is a real w/o a multiplicative inverse"