Homework #7

1. Let R be a relation defined on $\mathcal{P}(\mathbb{Z})$ defined by

$$(A, B) \in R$$
 if and only if $A \cap B \neq \emptyset$.

Prove or disprove each of the following statements:

- a. R is reflexive.
- b. R is symmetric.
- c. R is transitive.
- 2. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function on \mathbb{R} . Define a relation R_f on \mathbb{R} by the rule $(x, y) \in R_f$ if and only if f(x) = f(y). Explicitly, we have $R = \{(x, y) \in \mathbb{R}^2 \mid f(x) = f(y)\}$.
 - a. Prove that R_f is an equivalence relation.
 - b. Suppose that f is the squaring function defined by $f(x) = x^2$. For a fixed real number $r \in \mathbb{R}$, determine the equivalence class $[r]_{R_f}$.
- 3. (Contructing the rationals) Define a relation \sim on $\mathbb{Z} \times \mathbb{N}$ such that for any two pairs $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{N}$ we have:

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$

- a. Prove that \sim is an equivalence relation
- b. Determine the set $[(0,3)]_{\sim}$ and write it using set-builder notation.
- c. Write out three elements of $[(2,5)]_{\sim}$.
- d. We can naturally identify $(\mathbb{Z} \times \mathbb{N})/\sim$ with one of our standard sets. Which set is this?
- 4. (Modular arithmetic) A key property of the relation of congruence modulo n is that it is preserved by addition and multiplication. In this sense, congruence behaves like equality. For example, from the relation $2 \equiv 5 \pmod{3}$ we can, by adding 13 to both sides, deduce $15 \equiv 18 \pmod{3}$. And by multiplying both sides by 2 we obtain $4 \equiv 10 \pmod{3}$.

Prove that this works in general. That is, fix $n \in \mathbb{N}$ and prove that for any $x, y, k \in \mathbb{Z}$ we have

- a. if $x \equiv y \pmod{n}$, then $k + x \equiv k + y \pmod{n}$
- b. if $x \equiv y \pmod{n}$, then $kx \equiv ky \pmod{n}$
- 5. A relation R on a set A is called *irreflexive* iff $(\forall x \in A)((x,x) \notin R)$. It is called *asymmetric* iff $(\forall x,y \in A)((x,y) \in R \Rightarrow (y,x) \notin R)$.

Prove that a relation R on a set A is asymmetric iff it is both irreflexive and anti-symmetric.