Homework \#3

1. Prove or disprove each of the following statements:
(i.) $\bigcup_{n \in \mathbb{N}} \mathcal{P}([n]) \subseteq \mathcal{P}(\mathbb{N})$
(ii.) $\mathcal{P}(\mathbb{N}) \subseteq \bigcup_{n \in \mathbb{N}} \mathcal{P}([n])$
2. For this problem, you may use the fact that $\frac{1}{n}$ gets arbitrarily close to 0 as n gets larger and larger. That is, you may assume that for every $z \in \mathbb{R}$ with $z>0$, there is an $n \in \mathbb{N}$ such that $\frac{1}{n}<z$.
For each $n \in \mathbb{N}$, define the sets A_{n} and B_{n} as follows:

$$
\begin{aligned}
& A_{n}=\left\{x \in \mathbb{R} \left\lvert\, 0 \leq x \leq \frac{n-1}{n}\right.\right\} \\
& B_{n}=\left\{y \in \mathbb{R} \left\lvert\,-\frac{1}{n}<y<1\right.\right\} .
\end{aligned}
$$

Use a double containment argument to prove that

$$
\bigcup_{n \in \mathbb{N}} A_{n}=\bigcap_{n \in \mathbb{N}} B_{n}
$$

3. Consider the following proposition P :

$$
(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})\left(x^{2}-y^{2} \geq 0\right)
$$

Write $\neg P$ in positive form, that is, write down a statement logically equivalent to $\neg P$ with the negation symbol inside the quantifiers (or, better yet, with no negation symbol). Then determine if P or $\neg P$ is true. If P is true, prove it. If $\neg P$ is true, then prove $\neg P$.
4. Write out the following statements symbolically in positive form and determine whether they are true or false (no proof required).

- There is no real number whose square is -1 .
- If an integer n has a multiplicative inverse in the integers, then n must be 0 or 1 .
- For any real numbers x and y, if x and y are both nonpositive then their product is nonnegative.
- The product of two odd integers is not even.

