Homework \#2

1. Let $(a, b) \in \mathbb{R}^{2}$ and fix $\epsilon \in \mathbb{R}$ with $\epsilon>0$. Define $C_{(a, b), \epsilon}$ as the set of real numbers "within ϵ " of (a, b) :
$C_{(a, b), \epsilon}=\left\{(x, y) \in \mathbb{R}^{2} \mid \sqrt{(x-a)^{2}+(y-b)^{2}}<\epsilon\right\}$.
a.) Give a verbal geometric description of $C_{(a, b), \epsilon}$.
b.) Identify the following sets. Write your answer in the form of $C_{(a, b), \epsilon}$ or as one of the standard sets discussed in class.
i. $C_{(0,0), 1} \cap C_{(0,0), 2}$
ii. $C_{(0,0), 1} \cup C_{(0,0), 2}$
iii. $C_{(0,0), 1} \cap C_{(2,2), 1}$
c.) For a given $\epsilon>0$, define $D_{(a, b), \epsilon}$ as follows:

$$
D_{(a, b), \epsilon}=\left\{(x, y) \in \mathbb{R}^{2} \mid \sqrt{(x-a)^{2}+(y-b)^{2}} \leq \epsilon\right\}
$$

What is $D_{(a, b), \epsilon}-C_{(a, b), \epsilon}$ geometrically? Write a definition for this set using set-builder notation.
2. Let A, B, and C be sets. Prove that

$$
A-(B-C) \subseteq(A-B) \cup C
$$

and then provide an example of sets A, B, and C for which the containment is strict.
3. Let A and B be sets, and suppose that $\mathcal{P}(A)=\mathcal{P}(B)$. Is it necessarily the case that $A=B$? If so, prove it. If not, provide a counterexample.
4. For each $n \in \mathbb{N}$, let $A_{n}=[n] \times[n]$. Define $B=\bigcup_{n \in \mathbb{N}} A_{n}$. Does $B=\mathbb{N} \times \mathbb{N}$? Either prove that it does, or show why it does not.
5. Let $I=\{x \in \mathbb{R} \mid 0<x<1\}$. For each $x \in I$, define $S_{x}=\{y \in \mathbb{R} \mid x<y<x+1\}$. Provide a double containment proof that

$$
\bigcup_{x \in I} S_{x}=\{z \in \mathbb{R} \mid 0<z<2\}
$$

