Homework \#12

1. Let $C=\left\{f \subseteq \mathbb{R}^{2} \mid f: \mathbb{R} \rightarrow \mathbb{R}\right.$ is a function $\}$. Prove that $|\mathbb{R}|<|C|$ by showing there is no surjection $F: \mathbb{R} \rightarrow C$.
2. Fix $a, b \in \mathbb{Z}$, not both 0 , and $m \in \mathbb{Z}$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b m, b)$ by proving $g c d(a, b) \leq$ $\operatorname{gcd}(a+b m, b)$ and $\operatorname{gcd}(a, b) \geq \operatorname{gcd}(a+b m, b)$.
3. Fix $a, b \in \mathbb{Z}$, not both 0 , and $m \in \mathbb{N}$. Prove that $\operatorname{gcd}(a m, b m)=m \operatorname{gcd}(a, b)$.
(One approach: prove $\operatorname{gcd}(a m, b m) \leq m \operatorname{gcd}(a, b)$ using Bezout's theorem, and $\operatorname{gcd}(a m, b m) \geq m \operatorname{gcd}(a, b)$ directly.)
4. Fix $a, b \in \mathbb{Z}$ and suppose that $\operatorname{gcd}(a, b)=1$. Prove that $\operatorname{gcd}(a+b, a-b)$ is either 1 or 2 .
5. Fix $p \in \mathbb{N}$ a prime, with $p>3$. Prove that $p^{2} \equiv 1(\bmod 24)$.
