Homework \#1

1. Rewrite the following sentences, using set-builder notation to define the set. Then, if possible, write out the set in roster notation.
a.) Let A be the set of all natural numbers whose squares are strictly less than 39 .
b.) Let B be the set of all real numbers that are roots of the equation $x^{2}-3 x-10=0$.
2. Let $I=\{-1,0,1\}$. For each $i \in I$, define $A_{i}=\{i-2, i-1, i, i+1, i+2\}$ and $B_{i}=\{-2 i,-i, i, 2 i\}$. Write out the following sets in roster notation (no justification is required):
a.) $\bigcup_{i \in I} A_{i}$ and $\bigcap_{i \in I} A_{i}$
b.) $\bigcup_{i \in I} B_{i}$ and $\bigcap_{i \in I} B_{i}$
c.) $\left(\bigcup_{i \in I} A_{i}\right)-\left(\bigcup_{i \in I} B_{i}\right)$ and $\left(\bigcap_{i \in I} A_{i}\right)-\left(\bigcap_{i \in I} B_{i}\right)$
d.) $\bigcup_{i \in I}\left(A_{i}-B_{i}\right)$ and $\bigcap_{i \in I}\left(A_{i}-B_{i}\right)$
3. For each $x \in \mathbb{R}$, define the set P_{x} as follows:

$$
P_{x}=\left\{y \in \mathbb{R} \mid y=x^{n} \text { for some } n \in \mathbb{N}\right\}
$$

a.) There are exactly 3 values of x for which P_{x} is finite. What are they and why?
b.) Determine the sets

$$
\bigcap_{0<x<1} P_{x} \text { and } \bigcup_{0<x<1} P_{x}
$$

Provide a brief justification for your answers. (A full proof is not necessary.)
c.) Determine the sets

$$
\bigcap_{k \in[3]} P_{2^{k}} \text { and } \bigcap_{k \in \mathbb{N}} P_{2^{k}}
$$

Provide a brief justification for your answers. (A full proof is not necessary.)

