Homework #8

- 1. Define a relation \leq on $\mathbb{N} \times \mathbb{N}$ by the rule $(n_0, m_0) \leq (n_1, m_1)$ iff $n_0 \leq n_1$ and $m_0 \leq m_1$. Prove that \leq is a partial order on $\mathbb{N} \times \mathbb{N}$. Provide an example to show that \leq is not a total order.
- 2. Let A be a set and suppose R is an equivalence relation on A. Prove that set of equivalences classes, A/R, is a partition of A.
- 3. Let A be a set and suppose R is a partial order on A (that is, R is a reflexive, transitive, and antisymmetric relation on A). For $x \in A$ define the *cone of* x, denoted $\langle x \rangle_R$, as follows

 $\langle x \rangle_R = \{ a \in A \mid (a, x) \in R \}$

Prove that for all $x, y \in A$, we have $\langle x \rangle_R \subseteq \langle y \rangle_R$ if and only if $(x, y) \in R$.