Homework \#7

1. Let R be a relation defined on $\mathcal{P}(\mathbb{Z})$ defined by

$$
(A, B) \in R \text { if and only if } A \cap B \neq \emptyset
$$

Prove or disprove each of the following statements:
a. R is reflexive.
b. R is symmetric.
c. R is transitive.
2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function on \mathbb{R}. Define a relation R_{f} on \mathbb{R} by the rule $(x, y) \in R_{f}$ if and only if $f(x)=f(y)$. Explicitly, we have $R=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x)=f(y)\right\}$.
a. Prove that R_{f} is an equivalence relation.
b. Suppose that f is the squaring function defined by $f(x)=x^{2}$. For a fixed real number $r \in \mathbb{R}$, determine the equivalence class $[r]_{R_{f}}$.
3. (Contructing the rationals) Define a relation \sim on $\mathbb{Z} \times \mathbb{N}$ such that for any two pairs $(a, b),(c, d) \in \mathbb{Z} \times \mathbb{N}$ we have:

$$
(a, b) \sim(c, d) \text { if and only if } a d=b c
$$

a. Prove that \sim is an equivalence relation
b. Determine the set $[(0,3)]_{\sim}$ and write it using set-builder notation.
c. Write out three elements of $[(2,5)]_{\sim}$.
d. We can naturally identify $(\mathbb{Z} \times \mathbb{N}) / \sim$ with one of our standard sets. Which set is this?
4. (Modular arithmetic) A key property of the relation of congruence modulo n is that it is preserved by addition and multiplication. In this sense, congruence behaves like equality. For example, from the relation $2 \equiv 5(\bmod 3)$ we can, by adding 13 to both sides, deduce $15 \equiv 18(\bmod 3)$. And by multiplying both sides by 2 we obtain $4 \equiv 10(\bmod 3)$.
Prove that this works in general. That is, fix $n \in \mathbb{N}$ and prove that for any $x, y, k \in \mathbb{Z}$ we have
a. if $x \equiv y(\bmod n)$, then $k+x \equiv k+y(\bmod n)$
b. if $x \equiv y(\bmod n)$, then $k x \equiv k y(\bmod n)$
5. A relation R on a set A is called irreflexive iff $(\forall x \in A)((x, x) \notin R)$. It is called asymmetric iff $(\forall x, y \in A)((x, y) \in R \Rightarrow(y, x) \notin R)$.
Prove that a relation R on a set A is asymmetric iff it is both irreflexive and anti-symmetric.

