Homework #4

1. Consider the following variable propositions:

```
Let P(x) be the proposition "1 \le x \le 3"
Let Q(x) be the proposition "(\exists k \in \mathbb{Z})(x = 2k)"
Let R(x) be the proposition "x^2 = 4"
```

Recall that a statement is in *positive form* if the only negation symbols in the statement appear next to substatements that do not contain quantifiers or connectives.

For each of the following statements, write the negation in a logically equivalent positive form. Then decide which claim (the original or the negation) is true (no proof required).

- a.) $(\forall x \in \mathbb{Z})(P(x) \Rightarrow Q(x))$
- b.) $(\exists x \in \mathbb{Z})(R(x) \land P(x))$
- c.) $(\forall x \in \mathbb{Z})(R(x) \Rightarrow P(x))$
- d.) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x \neq y \land P(x) \land Q(x))$
- 2. Consider the following propositions, which assert that the rational numbers are *dense*, and the integers are *discrete*, respectively:
 - (a) Strictly between any two distinct rational numbers lies a third rational number.
 - (b) For every integer n, there is a strictly larger integer m, such that there are no integers strictly between n and m.

Write out these propositions symbolically, using only logical symbols and the sets \mathbb{Q} and \mathbb{Z} .

- 3. For every $i \in \mathbb{N}$, define a set $A_i \subseteq \mathbb{N}$ such that the indexed family of sets $\{A_i : i \in \mathbb{N}\}$ satisfies all of the following properties (recall that " \subsetneq " means "is a *strict* subset of"):
 - a.) $(\forall n \in \mathbb{N})(\exists i \in \mathbb{N})(n \in A_i)$
 - b.) $(\forall i \in \mathbb{N})(\exists n \in \mathbb{N})(n \notin A_i)$
 - c.) $(\forall i, m \in \mathbb{N})(\exists n \in \mathbb{N})(n > m \land n \in A_i)$
 - d.) $(\exists j \in \mathbb{N})(\forall i \in \mathbb{N})(i \neq j \Rightarrow A_j \subsetneq A_i)$

Then, prove that the family you've defined satisfies each of these properties.

- 4. Use a chain of logical equivalences to prove the following propositions.
 - a.) Given a universal set U and sets $A, B \subseteq U$, it is the case that $(A \cup B) \cap \overline{A} = B A$.
 - b.) For all sets A, B, and C, it is the case that $A \cap (B C) = (A \cap B) (A \cap C)$.

(A possibly helpful hint: if P is a false statement, then $P \vee Q$ is logically equivalent to Q.)

5. Consider the following proposition:

For all integers n, n is an integer multiple of 3 if and only if $n^2 - 1$ is not a multiple of 3.

- a.) Write out this proposition symbolically, using only logical symbols and the set Z.
- b.) Prove the proposition. (You should be able to prove it using nothing more than the definition of being a multiple of 3, and the fact that every integer has a remainder of 0, 1, or 2 when divided by 3.)