Homework #2

1. Let $(a,b) \in \mathbb{R}^2$ and fix $\epsilon \in \mathbb{R}$ with $\epsilon > 0$. Define $C_{(a,b),\epsilon}$ as the set of real numbers "within ϵ " of (a,b):

$$C_{(a,b),\epsilon} = \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-a)^2 + (y-b)^2} < \epsilon \}.$$

- a.) Give a geometric description of $C_{(a,b),\epsilon}$.
- b.) Identify the following sets. Write your answer in the form of $C_{(a,b),\epsilon}$ or as one of the standard sets discussed in class.
 - i. $C_{(0,0),1} \cap C_{(0,0),2}$
 - ii. $C_{(0,0),1} \cup C_{(0,0),2}$
 - iii. $C_{(0,0),1} \cap C_{(2,2),1}$
- c.) For a given $\epsilon > 0$, define $D_{(a,b),\epsilon}$ as follows:

$$D_{(a,b),\epsilon} = \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-a)^2 + (y-b)^2} \le \epsilon \}.$$

What is $D_{(a,b),\epsilon} - C_{(a,b),\epsilon}$ geometrically? Write a definition for this set using set-builder notation.

2. Let A, B, and C be sets. Prove that

 $A - (B - C) \subseteq (A - B) \cup C$

and then provide an example of sets A, B, and C for which the containment is *strict*.

- 3. Let A and B be sets, and suppose that $\mathcal{P}(A) = \mathcal{P}(B)$. Is it necessarily the case that A = B? If so, prove it. If not, provide a counterexample.
- 4. For each $n \in \mathbb{N}$, let $A_n = [n] \times [n]$. Define $B = \bigcup_{n \in \mathbb{N}} A_n$. Does $B = \mathbb{N} \times \mathbb{N}$? Either prove that it does, or show why it does not.
- 5. Let $I = \{x \in \mathbb{R} \mid 0 < x < 1\}$. For each $x \in I$, define $S_x = \{y \in \mathbb{R} \mid x < y < x + 1\}$. Provide a double containment proof that

$$\bigcup_{x \in I} S_x = \{ z \in \mathbb{R} \mid 0 < z < 2 \}.$$