Homework #10

- 1. Define functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ such that $g \circ f = \mathrm{id}_{\mathbb{N}}$ but $f \circ g \neq \mathrm{id}_{\mathbb{N}}$. Prove that your functions satisfy these identities.
- 2. Suppose that A and B are sets. Suppose further that |A| = |B|, that is, there exists a bijection $f: A \to B$. Show that $|\mathcal{P}(A)| = |\mathcal{P}(B)|$ by constructing a bijection $F: \mathcal{P}(A) \to \mathcal{P}(B)$. Prove that the function F you construct is a bijection.
- 3. a. Define a function $f : \mathbb{R}^3 \to \mathbb{R}^2$ by f(x, y, z) = (xy, xz). Prove or disprove the following statements.
 - f is injective.
 - f is surjective.
 - b. Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by the rule f(x, y) = (3x + 2y, 4x + y). Show that f is a bijection by explicitly defining an inverse function for f and proving it is the inverse.