## Homework \#10

1. Define functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $g \circ f=\operatorname{id}_{\mathbb{N}}$ but $f \circ g \neq \mathrm{id} \mathrm{N}_{\mathbb{N}}$. Prove that your functions satisfy these identities.
2. Suppose that $A$ and $B$ are sets. Suppose further that $|A|=|B|$, that is, there exists a bijection $f: A \rightarrow B$. Show that $|\mathcal{P}(A)|=|\mathcal{P}(B)|$ by constructing a bijection $F: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$. Prove that the function $F$ you construct is a bijection.
3. a. Define a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $f(x, y, z)=(x y, x z)$. Prove or disprove the following statements.

- $f$ is injective.
- $f$ is surjective.
b. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rule $f(x, y)=(3 x+2 y, 4 x+y)$. Show that $f$ is a bijection by explicitly defining an inverse function for $f$ and proving it is the inverse.

