10.3 Polar Coordinates

- A point P in the plane is uniquely determined by its rectangular coordinates (x, y).

\[y \rightarrow P = (x, y) \]
\[\downarrow \]
\[x \]

- Can also specify P by its polar coordinates \((r, \theta)\) where:
 - \(r\) = distance to origin
 - \(\theta\) = angle made w/ x-axis

\[r \quad \theta \]
\[\uparrow \]
\[\downarrow \]

Example:

\(P = (2, \pi/4) \)
\(Q = (2, 5\pi/4) \) are shown below.
Note: we allow $\theta > 2\pi$ and $\theta < 0$

e.g.: P also has coords $(2, \frac{\pi}{4})$ and $(2, \frac{7\pi}{4})$

So: polar coords are not unique.

Note: also allow $r < 0$.

e.g.: Q also has coords $(-2, \frac{\pi}{4})$
Translating:

from polar to rect: use \(x = r \cos \theta \)
\(y = r \sin \theta \)

from rect. to polar: use \(x^2 + y^2 = r^2 \)
\(\tan \theta = \frac{y}{x} \)

ex: if \(P \) has polar coords \((2, \frac{\pi}{4})\)
then \(P \) has rectangular coords
\[
\begin{align*}
x &= 2 \cos \left(\frac{\pi}{4} \right) = 2 \left(\frac{\sqrt{2}}{2} \right) = \sqrt{2} \\
y &= 2 \sin \left(\frac{\pi}{4} \right) = 2 \left(\frac{\sqrt{2}}{2} \right) = \sqrt{2}
\end{align*}
\]
If P has rectangular coords (3,4) then P has polar coords given by:

\[r^2 = x^2 + y^2 = 25 \Rightarrow r = 5 \]
\[\theta = \tan^{-1} \left(\frac{y}{x} \right) = 0.927 \ldots \]

(5, 0.927\ldots)

Polar curves

- can also specify curves w/ polar eqns.
- usually we consider equations of the form \(r = f(\theta) \), i.e. specifying \(r \) as a function of \(\theta \).
- graph of such an eq'n is all polar \((r, \theta)\) where \(r = f(\theta) \)

ex: graph the polar curve \(r = 2 \).

sol'n: consists of all points \((r, \theta)\) where \(r = 2 \).
to graph more complicated curves

$r = f(\theta)$, various approaches:

- plot points (not usually effective by itself)
- translate to rectangular coords (doesn't always work)
- use calculus to find points w/ none or vert. tan lines (see second ex below)
- use brain

Ex: graph $r = 2 \cos \theta$

Sol'n: can plot some points to start.
\[r = 2 \cos \theta \]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(\frac{\pi}{4})</td>
<td>(\sqrt{2})</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{3\pi}{4})</td>
<td>(-\sqrt{2})</td>
</tr>
<tr>
<td>(\pi)</td>
<td>(-2)</td>
</tr>
</tbody>
</table>

\[(\frac{\sqrt{2}}{2}, \frac{\pi}{4}) \]
\[(-2, \pi) \]

Only gives a rough sense of curve.

In this case we can translate to rectangular coordinates, but requires some creativity.

Use:
\[x = r \cos \theta \]
\[y = r \sin \theta \]
\[x^2 + y^2 = r^2 \]

to get \(r = 2 \cos \theta \) into \(x, y \)

\[\Rightarrow \cos \theta = \frac{x}{r} \]
\[\Rightarrow 2 \cos \theta = 2 \frac{x}{r} = r \]
\[\Rightarrow r^2 = 2x \]
\[\Rightarrow x^2 + y^2 = 2x \]
\[\Rightarrow x^2 - 2x + y^2 = 0 \]

(complete square)
\[\Rightarrow x^2 - 2x + 1 + y^2 = 1 \]
\[\Rightarrow (x-1)^2 + y^2 = 1 \]

Circle of radius 1 centered at \((1,0)\).
Using calculus: to graph a curve $r = f(\theta)$, finding $\frac{\text{dy}}{\text{dx}}$ at various points gives more reliable info than plotting points randomly and trying to interpolate.

So, we need a formula for $\frac{\text{dy}}{\text{dx}}$.

Using $x = r \cos \theta = f(\theta) \cos (\theta)$,

$y = r \sin \theta = f(\theta) \sin (\theta)$

(idea: can view a polar curve $r = f(\theta)$ as a parametric curve (using θ as a parameter instead of t))

- We have: $\frac{\text{dx}}{\text{d}\theta} = \frac{\text{dr}}{\text{d}\theta} \cos \theta - r \sin \theta$

- $\frac{\text{dy}}{\text{d}\theta} = \frac{\text{dr}}{\text{d}\theta} \sin \theta + r \cos \theta$

- From our previous formula we know:

$\frac{\text{dy}}{\text{dx}} = \frac{\text{dy/d}\theta}{\text{dx/d}\theta} = \frac{\frac{\text{dr}}{\text{d}\theta} \sin \theta + r \cos \theta}{\frac{\text{dr}}{\text{d}\theta} \cos \theta - r \sin \theta}$