Taylor and Maclaurin Series

The big Q: Which functions \(f \) have power series rep'ns? How do we find them?

So far: started w/ \(f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \) for \(-1 < x < 1\)

and found power series rep'ns for various ones on the function: \(\frac{1}{1+x^2}, \ln(1+x), \text{etc.} \)

A new approach: Sups we are given a function \(f(x) \) and we assume \(f(x) \) has a power series rep'n:

\[f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \ldots \]

on some interval of the form \((a-R, a+R)\)

But we don't know the \(c_n \)'s:

How do we find them?

Observe: by our differentiation rules for power series, we have:
\[f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \ldots \]

so: \[f'(a) = c_1 = 1 \cdot c_1 \]

\[f''(x) = 2c_2 + 3 \cdot 2c_3(x-a) + 4 \cdot 3c_4(x-a)^2 + \ldots \]

so: \[f''(a) = 2c_2 = 2 \cdot c_2 \]

\[f'''(x) = 3 \cdot 2c_3 + 4 \cdot 3 \cdot 2c_4(x-a) + 5 \cdot 4 \cdot 3c_5(x-a)^2 + \ldots \]

so: \[f'''(a) = 3 \cdot 2c_3 = 3 \cdot c_3 \]

and in general we see:

\[f^{(n)}(x) = n! \cdot c_n + \text{terms with} \ (x-a) \]

so: \[f^{(n)}(a) = n! \cdot c_n \]

we get a formula for \(c_n \):

\[c_n = \frac{f^{(n)}(a)}{n!} \]

Thus is big news: if we can find derivatives \(f^{(n)}(a) \), we can solve for the coefficients \(c_n \) in \(f \)'s power series rep's \(a \) (assuming such a rep's exists)
We've proved:

Theorem: If \(f(x) \) has a power series representation centered at \(a \), i.e., if there is \(R > 0 \) such that

\[
f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \quad \text{for } |x-a| < R
\]

then the coefficients \(c_n \) are given by:

\[
c_n = \frac{f^{(n)}(a)}{n!}
\]

So then:

\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad \text{for } |x-a| < R
\]

\[
= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \ldots
\]

- this series is called the **Taylor series** for \(f(x) \) centered at \(a \).
- In the case when \(a = 0 \), called the **Maclaurin series** for \(f \).
Thm says: IF \(f(x) \) can be represented by a power series @ \(x=a \), then the power series is given by the Taylor series.

- Some f's do not have a power series rep'n anywhere; such f's will not equal their Taylor series anywhere.
- We will typically ignore the question: "does this f(x) have a Taylor series expansion @ \(x=a \)?"
 and just assume that it does.

- But you should be aware this assumption is being made.
 (see book for a way to prove a given f has a Taylor series)

Ex: Find the Maclaurin series for \(f(x) = e^x \) and its radius of convergence.

Sol'n: By thm, Maclaurin series given by:

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n
\]
In this case \(f(x) = e^x \).

So \(f'(x) = f''(x) = f'''(x) = \ldots = e^x \).

Hence \(f^{(n)}(0) = e^0 = 1 \) for every \(n \).

So Maclaurin series is:

\[
\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
\]

we've checked before: this series converge everywhere (i.e. radius is \(\infty \)).

Can be proved: \(e^x \) equals its

Maclaurin series, i.e.

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots
\]

for every \(x \).

In particular:

\[
e = e^1 = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots
\]

Can use this expression to get approximations for \(e \).
For example: \[1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} = 2.708\ldots \]

whereas \(e = 2.718\ldots \)

A given function \(f(x) \) can have different power series rep's around different centers \(a \).

Ex: Find the Taylor series for \(e^x \) around \(a = 2 \).

Sol: by theorem, Taylor series given by:

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!} (x-2)^n
\]

Here \(f(x) = e^x \) so \(f^{(n)}(x) = e^x \) so \(f^{(n)}(2) = e^2 \) for every \(n \).

Taylor series is:

\[
\sum_{n=0}^{\infty} \frac{e^2}{n!} (x-2)^n = e^2 + e^2(x-2) + \frac{e^2}{2!}(x-2)^2
\]

\[+ \frac{e^2}{3!} (x-2)^3 + \ldots \]

\(e^2 \) to check: series converges everywhere and can prove \(e^x = e^x \) everywhere.

Hence \(e^x = \sum_{n=0}^{\infty} \frac{e^2}{n!} (x-2)^n \) for every \(x \)