\[
= \left(\frac{n+1}{n} \right)^2 \cdot \frac{1}{3}
\]

hence \[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 \frac{1}{3} = \frac{1}{3} < 1. \]

by ratio test, \(\sum (-1)^n \frac{n^3}{2^n} \) converges absolutely (hence converges).

Note: if we’d just wanted to show convergence, could’ve gotten away w/ alt. series test.

(2) What about \(\sum \frac{n!}{100^n} \)?

\[
\text{Sol'n in this case:} \quad \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)!}{n!} \cdot \frac{100^n}{100^{n+1}} \right| = \left| \frac{n+1}{100} \right|
\]

so \[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{100} = \infty \]

by ratio test, series diverges.
(3) What about \(\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2} \)?

\[
\text{Sol}: \quad \left| \frac{\text{ant} \frac{1}{n}}{an} \right| = \left| \frac{\sqrt{n+1}}{\sqrt{n}} \right| \cdot \frac{1+n^2}{1+(n+1)^2} \\
\quad = \sqrt{\frac{n+1}{n}} \cdot \frac{1+n^2}{n^2+2n+2} \\
\text{So } \lim_{n \to \infty} \left| \frac{\text{ant} \frac{1}{n}}{an} \right| = \lim_{n \to \infty} \frac{\sqrt{n+1}}{n} \cdot \frac{1+n^2}{n^2+2n+2} = 1 \cdot 1 \\
\text{D ratio test inconclusive.}
\]

but observe:

\[
\frac{\sqrt{n}}{1+n^2} \leq \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}}
\]

and \(\sum \frac{1}{n^{3/2}} \) converges.

By Comparison:

\(\sum \frac{\sqrt{n}}{1+n^2} \) converges.
Thm (Root Test):

\[\text{If } \lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1 \text{ then } \sum_{n=1}^{\infty} a_n \text{ converges absolutely.} \]

\[\text{If } \lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1 \text{ or DNE, then } \sum_{n=1}^{\infty} a_n \text{ diverges.} \]

\[\text{If } \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1 \text{ or DNE, inconclusive.} \]

See book for proof (also uses geo. series).

Useful for dealing w/ series involving powers.

Ex: Does \[\sum_{n=1}^{\infty} \left(\frac{5n+6}{7n+20} \right)^n \] converge?

Sol/n in this case

\[\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{5n+6}{7n+20} = \frac{5}{7} < 1 \]

\[\Rightarrow \text{series converges absolutely.} \]
Power Series

Defn let x be a variable. A power series is an expression of the form
\[\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \ldots \]
where the \(c_n \)'s are real numbers (called the coefficients of the power series).

Ex: (i) if \(c_n = 1 \) for every \(n \) we get the power series:
\[\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \ldots \]

(ii) if \(c_n = 2^n \) for every \(n \):
\[\sum_{n=0}^{\infty} 2^n x^n = 1 + 2x + 4x^2 + 8x^3 + \ldots \]

We can think of a power series as an "infinite polynomial."
Only once we specify \(\infty \) does a power series become a series in our original sense. Once we specify an \(x \), we can ask about convergence/divergence of the series (for that \(x \)).

Ex: Consider the series from before: \(\sum x^n = 1 + x + x^2 + x^3 + \ldots \).

If \(x = \frac{1}{2} \), series becomes:

\[
\sum \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots
\]

\[
= 1 + \sum \left(\frac{1}{2}\right)^n \quad \text{geometric series converging to 1}
\]

\[
= 1 + 1 = 2
\]

But if \(x = 1 \) series becomes:

\[
\sum (1)^n = 1 + 1 + 1 + \ldots
\]

which diverges.
Notice a power series \(\sum_{n=0}^{\infty} c_n x^n \) always converges if \(x = 0 \), since in this case:
\[
\sum_{n=0}^{\infty} c_n 0^n = c_0 + 0 + 0 + \ldots = c_0
\]

The question: given a power series \(\sum_{n=0}^{\infty} c_n x^n \), for which \(x \)'s (besides \(c \)) does the series converge?

Ratio and root tests can often help to answer!

Ex: for our series:
\[
\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \ldots
\]

If we imagine plugging in for \(x \), so they become an actual series, we have \(c_n = x^n \), so:
\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{x^n} \right| = \lim_{n \to \infty} |x| = |x|
\]
So: if $|x| < 1$, i.e. $-1 < x < 1$, series converge by ratio test.

If $|x| > 1$, i.e. $x > 1$ or $x < -1$, series diverge by ratio test.

If $x = 1$, series is:

$$
\sum_{n=0}^{\infty} 1^n = 1 + 1 + 1 + \ldots \text{ which diverges}
$$

If $x = -1$, series is:

$$
\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \ldots \text{ which diverges}
$$

We've shown: $\sum x^n$ converges if and only if $-1 < x < 1$.

Ex: For which x does the series $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$ converge?

"$1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \ldots$"