Measure Theory and Lebesgue Integration.

Gautam Iyer, Fall 2014

$L1, \ Mon \ 8/25.$	• Introduction and motivation.
	• Lebesgue Measure on \mathbb{R}^n .
	– [1, §13] Abstract σ -algebras and measures.
$L2, \ Wed \ 8/27.$	- [1, §11] Lebesgue outer measure.
L3, Fri 8/29.	– [1, $\S12$] Separated additivity, and the outer measure of cells.
$L4, \ Wed \ 9/03.$	– $[1, \S13; 2, \S1.3]$ The Caratheodory condition.
	– [1, §13] The Lebesgue σ -algebra and uniqueness.
L5, Fri 9/5.	• Abstract measures
	- [2, §1.6] Dynkin systems, and equality of finite measures.
$L6,\ Mon\ 9/8.$	- [2, §1.5; 3, §7.2] Regularity of measures.
$L7, \ Wed \ 9/10.$	$-$ [2, $\S1.4$] Non Lebesgue-measurable sets
L8, Fri 9/12.	- [2, §1.5; 3, §1.3] Completion
$L9, \ Mon \ 9/15.$	• Measurable functions
	– [2, $\S 2.1;$ 3, $\S 2.1$] Definition and elementary properties.
L10, Wed 9/17.	- [2, §2.1] Cantor function & non-Borel sets.
L11, Fri 9/19.	- [2, §2.1; 3, §2.4] Approximation results.
$L12, \ Mon \ 9/22.$	• Integration.
	- [2, §2.3; 3, §2.2] Construction of the integral.
	– [2, $\S 2.4;$ 3, $\S 2.2$] Monotone convergence and linearity.
$L13, \ Wed \ 9/24.$	– [2, $\S 2.4;$ 3, $\S 2.2$] Fatou's lemma and dominated convergence.
L14, Fri 9/26.	- [2, §2.6] Push forward measures.
,	• Convergence
	- [2, §3.1] Egorov's theorem
$L15, \ Mon \ 9/29.$	- [2, §3.1] Convergence almost everywhere and in measure.
	$-L^p$ spaces.
T 40 TH 1 40 /4	* [2, §3.2] Normed vector spaces and Banach spaces.
L16, Wed 10/1.	
L17, Mon 10/6.	
L19, Mon 10/3.	- Uniform integrability, Vitali convergence theorem.
штэ, мон то/тэ.	
	$-[2, \S4.1; 3, \S3.1]$ Hanh and Jordan decompositions.

- [2, §4.1; 3, §3.1] The total variation norm of measures.

L20. Wed 10/15.

- [2, §4.2; 3, §3.2] Radon Nikodym theorem. L21, Mon 10/20.L22, Wed 10/22. - [2, §4.3; 3, §3.2] Lebesgue Decomposition L23, Fri 10/24. - [2, §3.5,§4.5; 3, §6.2] The dual of L^p . L24, Mon 10/27. • [2, §7; 3, §7.1, 7.3] Riesz Representation Theorem. - Construction of μ . L25, Wed 10/29. - Proof of the representation. L26, Fri 10/31. • Integration on Product Spaces. - [2, §5.1,5.2; 3, §2.5] The product measure. - [2, §5.2,5.3; 3, §2.5] Fubini and Tonelli theorems. L27, Mon 11/3. L28, Wed 11/5. • Convolutions - [5, §7] Young's inequality - [5, §7] L^p -convergence of approximate identities. L29. Fri 11/7. • Fourier Series. - [6, §1] Dirichlet, Fejér kernels and convergence of Cesàro sums. - [6, §1] Riemann Lebesgue Lemma Parseval's identity L30, Mon 11/10.- Periodic Sobolev spaces and embedding theorems. L31, Wed 11/12.L32, Fri 11/14. • Lebesgue Differentiation - [2, §6.2; 5, §7] Vitali covering and the Maximal function. - [2, §6.2; 5, §7] Lebesgue points and differentiation of measures. L33, Mon 11/17. - [2, §6.3; 5, §7] Absolute continuity of functions of one variable. L34, Wed 11/19. - [2, §6.3; 5, §7] Fundamental theorem of Calculus. L35, Fri 11/21.L36, Mon 11/25. - [2, §6.1; 5, §7] Change of variable. L37, Mon 12/2. • Fourier Transform $-[3, \S 8.3; 5, \S 9]$ L¹ theory and inversion. $-[3, \S 8.3; 5, \S 9]$ Plancheral theorem and L^2 -theory. L38, Wed 12/4. L39, Fri 12/6. - [3, §9.3] Sobolev spaces and embeddings. References [1] R. G. Bartle, The elements of integration and Lebesque measure, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1995. Containing a corrected reprint of the 1966 original [It
 - The elements of integration, Wiley, New York; MR0200398 (34 #293)], A Wiley-Interscience Publication. MR1312157 (95k:28001)
 - [2] D. L. Cohn, Measure theory, Birkhäuser, Boston, Mass. 1980. MR578344 (81k:28001)
 - [3] G. B. Folland, Real analysis, Second, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications, A Wiley-Interscience Publication. MR1681462 (2000c:00001)
 - [4] H. L. Royden, Real analysis, Third, Macmillan Publishing Company, New York, 1988. MR1013117 (90g:00004)

- [5] W. Rudin, Real and complex analysis, Third, McGraw-Hill Book Co., New York, 1987. MR924157 (88k:00002)
- [6] W. Schlag, Lecture notes on harmonic analysis, 2005. Available online at http://www.ma-th.uchicago.edu/~schlag/harmonicnotes_old.pdf.