
Math 720: Homework.

Do, but don’t turn in optional problems. There is a firm ‘no late homework’ policy.

Assignment 1: Assigned Wed 08/28. Due Wed 09/04

Keep in mind there is a firm “no late homework” policy. Starred problems are optional; but I’d

recommend looking at them. They often involve results I will use later in class.

1. Let µ be a positive measure on (X,Σ).

(a) If Ai ∈ Σ are such that Ai ⊆ Ai+1, show that µ(
⋃∞
i=1Ai) = limi→∞ µ(Ai).

(b) If Ai ∈ Σ are such that Ai ⊇ Ai+1, show that µ(
⋂∞
i=1Ai) = limi→∞ µ(Ai),

provided µ(A1) <∞. Show by example this is false true if µ(A1) =∞.

2. Prove any open subset of Rd is a countable union of cells.

3. For each of the following sets, compute the Lebesgue outer measure.

(a) Any countable set. (b) The Cantor set. (c) {x ∈ [0, 1] | x 6∈ Q}.

4. (a) If V ⊆ Rd is a subspace with dim(V ) < d, then show that λ∗(V ) = 0.

(b) If P ⊆ R2 is a polygon show that area(P ) = λ∗(P ).

5. Does there exist a σ-algebra whose cardinality is countably infinite? Disprove,
or find an example.

Optional problems, and details in class I left for you to check.

∗ Define µ(A) to be the number of elements in A. Show that µ is a measure on
(X,P(X)). (This is called the counting measure.)

∗ Let x0 ∈ X be fixed. Define δx0(A) = 1 if x0 ∈ A and 0 otherwise. Show that
δx0

is a measure on (X,P(X)). (This is called the delta measure at x0.)

∗ Show that λ∗(a+ E) = λ∗(E) for all a ∈ Rd, E ⊆ Rd.
∗ Show that λ∗(I) = `(I) for all cells. (I only proved it for closed cells in class.)

∗ Show that B(R) has the same cardinality as R.

∗ (Challenge) Suppose fn : [0, 1] → [0, 1] are all Riemann integrable, 0 6 fn 6 1

and (fn) → 0 pointwise. Show that lim
n→∞

∫ 1

0
fn = 0, using only standard tools

from Riemann integration.

Assignment 2: Assigned Wed 09/04. Due Wed 09/11

1. (a) Say µ is a translation invariant measure on (Rd,L) (i.e. µ(x+ A) = µ(A)
for all A ∈ L, x ∈ Rd) which is finite on bounded sets. Show that ∃c > 0
such that µ(A) = cλ(A).

(b) Let T : Rd → Rd be a linear transformation, and A ∈ L. Show that
T (A) ∈ L and λ(T (A)) = |det(T )|λ(A). [Hint: Express T in terms of elementary

transformations.]

2. (a) Let E ⊆ P(X), and ρ : E → [0,∞] be such that ∅ ∈ E , X ∈ E and ρ(∅) = 0.
For any A ⊆ X define

µ∗(A) = inf
{ ∞∑

1

ρ(Ei)
∣∣∣Ei ∈ E , and A ⊆

∞⋃
1

Ej

}
.

Show that µ∗ is an outer measure.

(b) Let (X, d) be any metric space, δ > 0, α > 0 and define

Eδ = {A ⊆ X
∣∣ diam(A) < δ} and ρα(A) =

πα/2

Γ(1 + α
2 )

(diam(A)

2

)α
.

Let H∗α,δ be the outer measure obtained with ρ = ρα and the collection
of sets Eδ. Define H∗α = limδ→0H

∗
α,δ. Show H∗α is an outer measure and

restricts to a measure Hα on a σ-algebra that contains all Borel sets. The
measure Hα is called the Hausdorff measure of dimension α.

(c) If X = Rd, and α = d show that Hd is a non-zero, finite constant multiple
of the Lebesgue measure. [In fact Hd = λ because of our choice of normalization

constant, but the proof is much harder.]

(d) Let S ∈ B(X). Show that there exists (a unique) d ∈ [0,∞] such that
Hα(S) = ∞ for all α ∈ (0, d), and Hα(S) = 0 for all α ∈ (d,∞). This
number is called the Hausdorff dimension of the set S.

(e) Compute the Hausdorff dimension of the Cantor set.

3. Using notation from the previous question, let Sδ = {B(x, r) | x ∈ X, r ∈
(0, δ)}. Using the collection of sets Sδ and the function ρ = ρα, we obtain an
outer measure S∗α,δ. As before one can show that S∗α = limδ→0 S

∗
α,δ is an outer

measure, and gives a Borel measure Sα.

(a) Show by example Sα 6= Hα in general.

(b) If X = Rd with the standard metric show that Sd = λ. [You may assume

ρd(Br) = λ(Br).]

Details in class I left for you to check. (Do it, but don’t turn it in.)

∗ Using notation from the proof of Caratheodory, show that µ∗(A ∩ (∪∞1 Ei)) =∑∞
1 µ∗(A ∩ Ei). [We only proved it for A = X in class.]
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Assignment 3: Assigned Wed 09/11. Due Wed 09/18

1. Let µ, ν be two measures on (X,Σ). Suppose C ⊆ Σ is a π-system such that
µ = ν on C.
(a) Suppose ∃Ci ∈ C such that

⋃∞
1 Ci = X and µ(Ci) = ν(Ci) < ∞. Show

that µ = ν on σ(C).
(b) If we drop the finiteness condition µ(Ci) <∞ is the previous subpart still

true? Prove or find a counter example.

2. (a) Let X be a metric space and µ a Borel measure on X. Suppose there
exists a sequence of sets Bn ⊆ X such that B̄n ⊆ B̊n+1, B̄n is compact,
X = ∪∞1 Bn and µ(Bn) <∞. Show that µ is regular.

(b) Show directly that for all A ∈ L, λ(A) = sup{λ(K)} where K ⊆ A is
compact, and λ(A) = inf{λ(U)} where U ⊇ A is open. [Note: The previous

subpart will only show this for all A ∈ B(Rd).]

3. (a) Find E ∈ B(R) so that for all a < b, we have 0 < λ(E ∩ (a, b)) < b− a.

(b) Let κ ∈ (0, 1/2). Does there exist E ∈ B(R) such that for all a < b ∈ R, we
have κ(b− a) 6 λ(I ∩ (a, b)) 6 (1− κ)(b− a)? Prove it.

4. Let A ∈ L(Rd). Prove every subset of A is Lebesgue measurable ⇐⇒ λ(A) = 0.

5. (a) Prove B(Rm+n) = σ({A×B | A ∈ B(Rm) &B ∈ B(Rn)}).
(b) Prove L(Rm+n) ) σ({A×B | A ∈ L(Rm) &B ∈ L(Rn)}).
(c) Show L(R2) ) B(R2).

Optional problems, and details in class I left for you to check.

∗ Let µ be a finite Borel measure on a compact metric space. Let

C = {A
∣∣ sup

K⊆A
K compact

µ(K) = µ(A) = inf
U⊇A
U open

µ(U)}.

We saw in class that C is closed under countable increasing unions. Show C is
closed under relative compliments.

∗ Is any σ-finite Borel measure on Rd regular?

∗ Show that there exists A ⊆ R such that if B ⊆ A and B ∈ L then λ(B) = 0,
and further, if B ⊆ Ac and B ∈ L then λ(B) = 0.

We say A ⊆ P(X) is an algebra if ∅ ∈ A, and A is closed under complements
and finite unions. We say µ0 : A → [0,∞] is a (positive) pre-measure on A if
µ0(∅) = 0, and for any countable disjoint sequence of sets sequence Ai ∈ A such that⋃∞

1 Ai ∈ A, we have µ0(
⋃∞

1 Ai) =
∑∞

1 µ0(Ai).

Namely, a pre-measure is a finitely additive measure on an algebra A, which is also
countably additive for disjoint unions that belong to the algebra.

∗ (Caratheodory extension) If A is an algebra, and µ0 is a pre-measure on A, show
that there exists a measure µ defined on σ(A) that extends µ0.

Assignment 4: Assigned Wed 09/18. Due Wed 09/25

1. Let C ⊆ Rd be convex. Must C be Lebesgue measurable? Must C be Borel
measurable? Prove or find counter examples. [The cases d = 1 and d > 1 are different.]

2. Let (X,Σ, µ) be a measure space. For A ∈ P (X) define µ∗(A) = inf{µ(E) | E ⊇
A&E ∈ Σ}, and µ∗(A) = sup{µ(E) | E ⊆ A&E ∈ Σ}.
(a) Show that µ∗ is an outer measure.

(b) Let A1, A2, · · · ∈ P(X) be disjoint. Show that µ∗(
⋃∞

1 Ai) >
∑∞

1 µ∗(Ai).
[The set function µ∗ is called an inner measure.]

(c) Show that for all A ⊆ X, µ∗(A) + µ∗(A
c) = µ(X).

(d) Let A ⊆ P(X) with µ∗(A) <∞. Show that A ∈ Σµ ⇐⇒ µ∗(A) = µ∗(A).

3. Let f : X → R be measurable, and g : R→ R be Lebesgue measurable. True or
false: g ◦ f : X → R is measurable? Prove or find a counter example.

4. Let (X,Σ) be a measure space, and f, g : X → [−∞,∞] be measurable. Suppose
whenever g = 0, f 6= 0, and whenever f = ±∞, g ∈ (−∞,∞). Show that
f
g : X → [−∞,∞] is measurable. [ Note that by the given data you will never get a

‘meaningless’ quotient of the form 0
0

or ±∞±∞ . The remainder of the quotients (e.g. 1
∞ ) can be

defined in the natural manner.]

5. Let fn : X → R be a sequence of measurable functions such that (fn) → f
almost everywhere (a.e.). Let g : R→ R be a Borel function.

(a) If for a.e. x ∈ X, g is continuous at f(x), then show (g ◦ fn)→ g ◦ f a.e.

(b) Is the previous part true without the continuity assumption on g?

Optional problems, and details in class I left for you to check.

∗ (An alternate approach to λ-systems.) Let M ⊆ P (X). We say M is a Mono-
tone Class, if whenever Ai, Bi ∈ M with Ai ⊆ Ai+1 and Bi ⊇ Bi+1 then⋃∞

1 Ai ∈ M and
⋂∞

1 Bi ∈ M. If A ⊆ P (X) is an algebra, then show that
the smallest monotone class containing A is exactly σ(A). [You should also address

existence of a smallest monotone class containing A.]

∗ Prove that the completion Σµ we defined in class is the smallest µ-complete
σ-algebra that contains Σ.

∗ Show that f : X → [−∞,∞] is measurable if and only if any of the following
conditions hold

(a) {f < a} ∈ Σ for all a ∈ R.

(b) {f > a} ∈ Σ for all a ∈ R.

(c) {f 6 a} ∈ Σ for all a ∈ R.

(d) {f > a} ∈ Σ for all a ∈ R.

∗ Let (fn) is a sequence of real valued measurable functions. Define f(x) =
lim fn(x) if the limit exists, and f(x) =∞ otherwise. Show that f is measurable.
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Assignment 5: Assigned Wed 09/25. Due Wed 10/02

1. Let (X,Σ, µ) be a measure space, and (X,Σµ, µ̄) it’s completion. Show that
g : X → [−∞,∞] is Σµ-measurable if and only if there exists two Σ-measurable
functions f, h : X → [−∞,∞] such that f = h µ-almost everywhere, and
f 6 g 6 h everywhere.

2. Let µ be a regular (but not necessarily finite) Borel measure on a metric space
X.

(a) True or false: For any f : X → R measurable and ε > 0 there exists
g : X → R continuous such that µ{f 6= g} < ε? Prove it or find a counter
example.

(b) Do the previous subpart when X = Rd.
3. Let for n ∈ N define An =

⋃
k∈Z[ 2k

2n ,
2k+1

2n ). If E ∈ B(R) does lim
n→∞

λ(An ∩ E)

exist? Prove it.

4. If f > 0 is measurable show that
∫
X
f dµ = 0 ⇐⇒ f = 0 almost everywhere.

5. (a) Suppose I ⊆ Rd is a cell, and f : I → R is Riemann integrable. Show that
f is measurable, Lebesgue integrable and that the Lebesgue integral of f
equals the Riemann integral.

(b) Is the previous subpart true if we only assume that an improper (Riemann)
integral of f exists? Prove or find a counter example.

Optional problems, and details in class I left for you to check.

∗ Let f : [0, 1] → [0, 1] be the Cantor function, and g(x) = inf{f = x}. Show
that f is (Hölder) continuous, and the range of g is the Cantor set. What is the
largest exponent α for which f is Hölder-α continuous?

∗ Let µ be the counting measure on N, and f : N→ R a function.

(a) If
∑∞

1 |f(n)| <∞, then show that
∑∞
n=1 f(n) =

∫
N f dµ.

(b) If the series
∑∞
n=1 f(n) is conditionally convergent, show that

∫
N f dµ is

not defined.

∗ Let X be a metric space C ⊆ X be closed and f : C → R be continuous.

(a) If 0 6 f 6 1, then show that there exists F : X → R continuous such
that F (c) = f(c) for all c ∈ C. [Hint: Let F (x) = f(x) for all x ∈ C, and

F (x) = inf{f(c) +
d(x,c)
d(x,C)

− 1 | c ∈ C} for x 6∈ C.]

(b) (Tietze extension theorem in metric spaces) Do the previous subpart with-
out assuming 0 6 f 6 1. [Hint: Put g = tan−1(f), construct G by the previous

subpart and set F = tan(G).]

∗ Finish the proof of Lusin’s theorem. (I only proved it for bounded positive
functions in class.)

∗ Find a Borel measurable function f : [0, 1]→ R which is not continuous almost
everywhere.

∗ Let 0 6 s 6 t be two simple functions. Show
∫
X
s 6

∫
X
t.

∗ Show directly
∫
X
αf = α

∫
X
f for any α ∈ R and integrable function f .

Assignment 6: Assigned Wed 10/02. Due Never

In light of your MIDTERM this homework is optional.

1. (a) If f is a bounded measurable function and µ(X) <∞, then show
∫
X
fdµ =

inf{
∫
X
t dµ | t > f is simple}.

(b) If f, g are bounded measurable functions and µ(X) <∞ show directly that∫
X

(f + g) dµ =
∫
X
f dµ+

∫
X
g dµ.

2. Let f : [0,∞)→ R be a measurable function. We define the Laplace Transform
of f to be the function F (s) =

∫∞
0

exp(−st)f(t) dt wherever defined.

(a) If
∫∞

0
|f(t)| dt <∞, show that F : [0,∞)→ R is continuous.

(b) If
∫∞

0
t|f(t)| dt <∞, show that F : [0,∞)→ R is differentiable.

(c) If f is continuous and bounded, compute lims→∞ sF (s).

3. For p ∈ R define define F (y) =

∫ ∞
0

sin(xy)

1 + xp
dx.

(a) For what p ∈ R is F defined? When defined, is F continuous? Prove it.

(b) Show that F is differentiable for p > 2, and not differentiable when p = 2.

4. (Push forward measures) Let µ be a measure on (X,Σ), and f : X → Y be any
function. Define τ ⊆ P(Y ) by τ = {A ⊆ Y | f−1(A) ∈ Σ}. For A ∈ τ define
ν(A) = µ(f−1(A)).

(a) Show that τ is a σ-algebra, and ν is a measure on (Y, τ). [The measure ν is

called the push-forward of µ under f , and often denoted by µf−1 .]

(b) If g ∈ L1(Y, ν), then show that g ◦ f ∈ L1(X,µ) and
∫
X
g ◦ f dµ =

∫
Y
g dν.

5. (Pull back measures) Say ν is a measure on (Y, τ) and f : X → Y is surjective.

(a) Show that Σ = {A ⊆ X | f(A) ∈ τ} need not be a σ-algebra. If Σ is a
σ-algebra, show that µ(A) = ν(f(A)) need not be a measure on (X,Σ).

(b) Define instead Σ = {A ⊆ X | f−1(f(A)) = A,&f(A) ∈ τ}, and µ(A) =
ν(f(A)). Show that Σ is a σ-algebra and µ is a measure.

(c) If g ∈ L1(Y, ν), then show that g ◦ f ∈ L1(X,µ) and
∫
X
g ◦ f dµ =

∫
Y
g dν.

6. (Linear change of variable) Let f : Rd → R be integrable.

(a) For any y ∈ Rd show that
∫
Rd f(x+ y) dλ(x) =

∫
Rd f(x) dλ(x).

(b) If T : Rd → Rd an invertible linear transformation, and E ∈ L(Rd). Show
that ∫

T−1(E)

(f ◦ T )|detT | dλ =

∫
E

f dλ.

Details in class I left for you to check.

∗ Check that if s, t are non-negative simple functions then
∫
X

(s+ t) =
∫
X
s+
∫
X
t.

∗ Show that there exists f : R→ [0,∞) Borel measurable such that
∫ b
a
f dλ =∞

for all a, b ∈ R with a < b ∈ R. [Hint: Let g(x) = χ{|x|<1}|x|
−1/2, and define

h(x) =
∑∞
m=−∞

∑∞
n=1 2−m−ng(x−m/n).]
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Assignment 7: Assigned Wed 10/09. Due Wed 10/16

1. Do questions 3, 5, and 6 from HW6.

2. (a) (Jensen’s inequality) Let a, b ∈ [−∞,∞] with a < b and ϕ : (a, b) → R be
a convex function. If µ(X) = 1 and f : X → (a, b) is integrable then show

ϕ
(∫

X

f dµ
)
6
∫
X

ϕ ◦ f dµ.

(b) If ϕ above is strictly convex, when can you have equality?

3. (a) Suppose p, q, r ∈ [1,∞] with p < q < r. Prove that for all f ∈ Lp ∩ Lr,
f ∈ Lq. Further, find θ ∈ (0, 1) such that ‖f‖q 6 ‖f‖

θ
p‖f‖

1−θ
r .

(b) If for some p ∈ [1,∞), f ∈ Lp(X)∩L∞(X) show that limq→∞‖f‖q = ‖f‖∞.
[This sort of justifies the notation ‖·‖∞.]

(c) Let p0 ∈ (0,∞], µ(X) = 1 and f ∈ Lp0(X). Prove limp→0+‖f‖p =

exp
(∫
X

ln|f | dµ
)
.

Optional problems, and details in class I left for you to check.

∗ Let g > 0 be measurable, and define ν(A) =
∫
A
g dµ. Show that ν is a measure,

and
∫
E
f dν =

∫
E
fg dµ.

∗ Prove Hölder’s inequality for p = 1 and q =∞.

∗ If pi, q ∈ [1,∞] with
∑N

1
1
pi

= 1
q , show that ‖

∏n
1 fi‖q 6

∏
‖fi‖pi .

∗ Show that L∞ is a Banach space.

∗ For p ∈ [0, 1) show that you need not have ‖f + g‖p 6 ‖f‖p + ‖g‖p.

∗ Let p, q ∈ (1,∞), 1
p + 1

q = 1, f ∈ Lp and g ∈ Lq. Show that
∫
X
|fg| dµ =

‖f‖p‖g‖q if and only if there exists constants α, β > 0 such that αfp = βgq.

∗ (a) If X is σ-finite, then show ‖f‖∞ = sup
g∈L1−{0}

1
‖g‖1

∫
X
fg dµ.

(b) Show that the previous subpart is false if X is not σ-finite.

Assignment 8: Assigned Wed 10/16. Due Wed 10/23

1. (a) If µ(X) < ∞, 1 6 p < q 6 ∞, show Lq(X) ⊆ Lp(X) and the inclusion
map from Lq(X)→ Lp(X) is continuous. Find an example where Lq(X) (
Lp(X). [Hint: Show ‖f‖p 6 µ(X)

1
p
− 1
q ‖f‖q .]

(b) Let `p = Lp(N) with respect to the counting measure. If 1 6 p < q show
that `p ( `q. Is the inclusion map `p ↪→ `q continuous? Prove your answer.

2. (a) Suppose p ∈ [1,∞), and f ∈ Lp(Rd, λ). For y ∈ Rd, let τyf : Rd → R be
defined by τyf(x) = f(x− y). Show that (τyf)→ f in Lp as |y| → 0.

(b) What happens for p =∞?

3. Suppose Σ = σ(C), where C ⊆ P(X) is countable. If µ is a σ-finite measure and
1 6 p <∞, show that Lp(X) is seperable (i.e. has a countable dense subset).

4. (a) Suppose limλ→∞ supn
∫
|fn|>λ|fn| dµ = 0. Show that there exists an increas-

ing funciton ϕ with ϕ(λ)/λ→∞ as λ→∞, such that supn
∫
X
ϕ(|fn|) <∞.

(b) Suppose {fn} is uniformly integrable, and supn
∫
|fn| < ∞. Show that

limλ→∞ supn
∫
|fn|>λ|fn| = 0.

(c) Show that the previous part fails without the assumption supn
∫
|fn| <∞.

5. Let en(x) = e2πinx, X = [0, 1]. For what p ∈ [1,∞] does {en} have a convergent
subsequence in Lp(X,λ)? Prove it.

Optional problems, and details in class I left for you to check.

∗ In Vitali’s convergence theorem prove that the assumption f ∈ L1 is unnecessary.

∗ If (fn) → f in L1, show that {fn} is uniformly integrable. [This is part of Vitali’s

theorem which I didn’t have time to prove in class.]

∗ Show that if (fn)→ f in measure, then (fn) need not converge to f in Lp.

∗ Finish the proof that Cc(X) is dense in Lp. [I only did the case when X is compact

in class.]

∗ Show that simple functions are dense in L∞.

∗ Show that Cc(R) is not dense in L∞(R).

∗ Show that L∞(R) is not separable.
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Assignment 9: Assigned Wed 10/23. Due Wed 10/30

1. Recall we defined the variation of µ by |µ| = µ+ + µ−, and the total variation
by ‖µ‖ = |µ|(X). (You should check that these are well defined.)

(a) Let M be the space of all finite signed measures on (X,Σ). Show that M
with total variation norm (i.e. with ‖µ‖ = |µ|(X)) is a Banach space.

(b) Show that (µn)→ µ if and only if (µn(A))→ µ(A) uniformly in A, ∀A ∈ Σ.

2. (a) For a signed measure, we define
∫
X
f dµ =

∫
X
f dµ+ −

∫
X
f dµ−. Suppose

(fn) → f , (gn) → g, and |fn| 6 gn almost everywhere with respect to |µ|.
If lim

∫
X
gn d|µ| =

∫
X
g d|µ| <∞, show that lim

∫
X
fn dµ =

∫
X
f dµ.

(b) Suppose f, fn ∈ L1, and (fn)→ f almost everywhere. Show that lim
∫
|fn−

f |d|µ| = 0 if and only if lim
∫
|fn| d|µ| =

∫
|f |d|µ|.

3. (a) If µ is a positive σ-finite measure, and ν is a finite signed measure such
that |ν| � µ, show that there exists f ∈ L1(X,µ) such that dν = f dµ.

(b) Compute dν
d|ν| in terms of the Hanh decomposition of ν. [Notation: We say

g = dν
dµ

if dν = g dµ.]

4. (a) Let ν1 and ν2 be two finite signed measures on X. Show that there exists
a finite signed measure ν1 ∨ ν2 such that ν1 ∨ ν2(A) > ν1(A) ∨ ν2(A), and
for any other finite signed measure ν such that ν(A) > ν1(A) ∨ ν2(A) we
ust have ν1 ∨ ν2 6 ν.

(b) If ν1, ν2 above are absolutely continuous with respect to a positive σ-finite

measure µ, prove ν1 ∨ ν2 � µ and express d(ν1∨ν2)
dµ in terms of dν1dµ and dν2

dµ .

5. Let (Ω,F , P ) be a measure space with P (Ω) = 1, and X ∈ L1(Ω,F , P ). [The

probabilistic interpretation is that Ω is the sample space, A ∈ F is an event, X is a random

variable, and P (X ∈ B) is the chance that X ∈ B, where B ∈ B(R).]

(a) Suppose G ⊆ F is a σ-sub-algebra of F . Show that there exists a unique
G-measurable function Y such that

∫
A
Y dP =

∫
A
X dP for all A ∈ G. [Y is

called the conditional expectation of X given G, and denoted by E(X | G).]

(b) (Tower property) If H ⊆ G is a σ-sub-algebra, show that E(X |H) =
E
(
E(X | G) |H) almost everywhere.

(c) (Conditional Jensen) If ϕ : R → R is convex, show that ϕ(E(X | G)) 6
E(ϕ(X) |G) almost everywhere.

(d) Suppose X ∈ L2(Ω,F , P ). Show that E(X | G) is the L2-orthogonal pro-
jection of X onto the subspace L2(Ω,G). [Namely show E(X | G) ∈ L2(Ω,G), and∫
Ω(X − E(X |G))Y dP = 0 for all Y ∈ L2(Ω,G).]

Optional problems, and details in class I left for you to check.

∗ In the proof of the Hanh decomposition, prove the following: Say µ(X) > −∞,
and α = inf{µ(B)}. Let B′n be a sequence of negative sets such that µ(B′n)→ α.
Let N = ∪B′n. Show µ(N) = α.

∗ Prove the Hanh decomposition is unique up to null sets.

∗ Prove uniqueness of the Jordan decomposition.

∗ Show that the Radon-Nikodym theorem need not hold if µ, ν are not σ-finite.

Assignment 10: Assigned Wed 10/30. Due Wed 11/06

1. (a) Let p ∈ [1,∞) and q be conjugate Hölder exponent. If X is σ-finite, show
that there exists a bijective linear isometry between (Lp)∗ and Lq.

(b) The above result is false for p =∞ even when µ(X) <∞. Find where our
proof from class (when µ(X) <∞) fails when p =∞.

(c) We can (partially) construct a counter example on `∞ as follows. The
Hanh-Banach theorem shows that there exists exists T ∈ (`∞)∗ such that
Ta = lim an, for all a = (an) ∈ `∞ such that lim an exists and is finite.
Show that there does not exist b ∈ `1 such that Ta =

∑
anbn for all a ∈ `∞.

2. (a) Suppose
∑∞
m=1(

∑∞
n=1 |am,n|) < ∞. Show that

∑∞
m=1(

∑∞
n=1 am,n) =∑∞

n=1(
∑∞
m=1 am,n).

(b) Give a counter example to (a) if we only assume
∑
m

∑
n am,n <∞. Find

a counter example where both iterated sums are finite.

3. (a) If X and Y are not σ-finite, show that Fubini’s theorem need not hold.

(b) If
∫

[−1,1]2
f dλ is not assumed to exist (in the extended sense), show that

both iterated integrals can exist, be finite, but need not be equal.

4. (Fubini for completions.) Suppose (X,Σ, µ) and (Y, τ, ν) are two σ-finite, com-
plete measure spaces. Let $ = (Σ ⊗ τ)π denote the completion of Σ ⊗ τ with
respect to the product measure π = µ× ν.

(a) Show that Σ⊗ τ need not be π-complete (i.e. $ ) Σ⊗ τ in general).

(b) Suppose f : X × Y → [−∞,∞] is F-measurable. Define as usual the slices
ϕf,x : Y → [0,∞] by ϕf,x(y) = f(x, y), and similarly ψf,y(x) = f(x, y).
Show that for µ-almost all x ∈ X, ϕf,x is an τ -measurable, and for ν-
almost all y, ψf,y is an Σ-measurable.

(c) Suppose f is integrable on X × Y in the extended sense. Define F (x) =∫
Y
f(x, y) dν(y) and G(y) =

∫
X
f(x, y) dµ(x). Show F is defined µ-a.e.

and Σ-measurable. Similarly show G is defined ν-a.e., and τ -measurable.
Further, show and that

∫
X
F dµ =

∫
Y
Gdν =

∫
X×Y fd(µ× ν).

5. Let (X,Σ, µ), (Y, τ, ν) be two σ-finite measure spaces, p ∈ [1,∞], and f : X ×
Y → R is Σ⊗ τ measurable. Let F (x) =

∫
Y
f(x, y) dν(y), and ψy,f be the slice

of f defined by ψy,f (x) = f(x, y). Show that ‖F‖Lp(X) 6
∫
Y
‖ψy,f‖Lp(X) dν(y).

[When Y = {1, 2} with the counting measure, this is exactly Minkowski’s triangle inequality.]

Optional problems, and details in class I left for you to check.

∗ Let µ(X) < ∞, p ∈ [1,∞) and T ∈ (Lp)∗. Let ν(A) = T (χ
A

). We’ve seen in
class that ν � µ and so dν = g dµ for some g ∈ L1(µ).

(a) Show that Tf =
∫
X
fg dµ for all f simple.

(b) If 1
p + 1

q = 1 show ‖g‖q = sup{
∫
X
sg}, where the supremum runs over all

simple functions s such that ‖s‖p 6 1. Conclude g ∈ Lq and ‖g‖q 6 ‖T‖.
(c) Show that Tf =

∫
X
fg dµ for all f ∈ Lp, to conclude the proof.

∗ Show that the Lebesgue measure on Rm+n is the product of the Lebesgue mea-
sures on Rm and Rn respectively.
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Assignment 11: Assigned Wed 11/06. Due Wed 11/13

1. If 1
p + 1

q = 1, f ∈ Lp, g ∈ Lq show that f ∗ g is bounded and continuous. If

p, q <∞, show further f ∗ g(x)→ 0 as |x| → ∞.

2. Let {ϕn} be an approximate identity.

(a) If f ∈ C(Rd) ∩ L∞, show f ∗ ϕn → f pointwise.

(b) For α ∈ (0, 1) define

‖f‖Cα = ‖f‖∞+sup
x 6=y

|f(x)− f(y)|
|x− y|α

, and Cα = {f : Rd → R
∣∣ ‖f‖Cα <∞}.

If f ∈ Cα, show that f ∗ ϕn ∈ Cα and f ∗ ϕn → f in Cα.

3. Define S(Rd) = {f ∈ C∞(Rd) | ∀m,α, supx(1 + |x|m)|Dαf(x)| < ∞}. Here
m ∈ N ∪ {0}, and α = (α1, . . . , αd) ∈ (N ∪ {0})d is a multi-index, and Dαf =
∂α1

1 · · · ∂
αd
d f . The space S is called the Schwartz Space.

(a) If p ∈ [1,∞), f ∈ Lp(Rd), g ∈ S(Rd), show that f ∗ g ∈ C∞(Rd), and
further Dα(f ∗ g) = f ∗ (Dαg).

(b) For p ∈ [1,∞), show that C∞c and S are dense subsets of Lp

4. Let A,B ∈ L(R) be measurable, and define A + B = {a + b | a ∈ A, b ∈ B}. If
λ(A) > 0 and λ(B) > 0 show A+B contains an interval.

Though I encourage you to check the properties on the Dirichlet and Fejér kernels
stated in the optional problems, you may assume them here without proof.

Let Cper = {f ∈ C(R) | τ1f = f} denote all continuous functions with period 1.
Since the Fejér kernels are an approximate identity, it immediately follows that the
Cesàro sums σNf → f uniformly, for any f ∈ Cper. For general f ∈ Cper, however,
the partial sums SNf need not converge to f even pointwise. (In fact, there exist
many f ∈ Cper such that SNf is divergent on a dense Gδ.) If, however, f is a little
bit better than continuous, then the Fourier series of f converges to f pointwise.

5. Let α ∈ (0, 1) and f ∈ Cαper. Show that (SNf)→ f uniformly, as N →∞.

Optional problems, and details in class I left for you to check.

∗ If f ∈ Lp, g ∈ Lq with p, q ∈ [1,∞] and 1/p+ 1/q > 1, show that f ∗ g = g ∗ f .

∗ If f ∈ Lp, g ∈ Lq, h ∈ Lr with p, q, r ∈ [1,∞] and 1/p + 1/q + 1/r > 2, show
that (f ∗ g) ∗ h = f ∗ (g ∗ h).

∗ Define the Derichlet kernel by DN (x) =
∑N
−N exp(2πinx).

(a) Show that SNf(x) = DN ∗ f(x)
def
=
∫ 1

0
f(y)DN (x − y) dy. [Recall, SNf =∑N

−N f̂(n)en, where en(x) = e2πinx, and f̂(n) = 〈f, en〉 =
∫ 1
0 f(y)ēn(y) dy.]

(b) Show that DN (x) = sin((2N+1)πx)
sin(πx) . Further show limN→∞

∫ 1−ε
ε
|DN | =∞.

∗ Define Fejér kernel by FN = 1
N

∑N−1
0 Dn.

(a) Show that σNf
def
= 1

N

∑N−1
0 Snf = FN ∗ f .

(b) Show that FN (x) = sin2(Nπx)
N sin2(πx)

, and that {FN} is an approximate identity.

Assignment 12: Assigned Wed 11/13. Due Wed 11/20

1. Let µ be a finite signed Borel measure on [0, 1]. If ∀n ∈ Z µ̂(n) = 0, show µ = 0.

2. Let 0 6 r < s. Show that any bounded sequence in Hs
per has a subsequence that

is convergent in Hr
per.

3. Let f ∈ L2([0, 1]). Show that there exists a unique u ∈ C∞(R × (0,∞)) such
that u(x + 1, t) = u(x, t), limt→0+‖u(·, t) − f(·)‖L2

per
= 0, and ∂tu − ∂2

xu = 0.
[Hint: You may assume the result of the optional problems.]

4. Let s ∈ (0, 1] and f ∈ L2
per. Prove f ∈ Hs

per ⇐⇒ sup
0<h61

h−α‖τhf − f‖L2 <∞.

[Update: The converse is false. A correction with solution will be posted.]

5. (a) Let n ∈ N be even, 1
n + 1

n′ = 1. If f̂ ∈ `n′(Z), show that f ∈ Lnper([0, 1])

and ‖f‖Ln 6 ‖f̂‖`n′ . [Hint: Let n = 2m. Then ‖f‖nLn = ‖(fm)
∧‖2`2 .]

(b) Let s > 1
2 −

1
p > 0, and 1

p + 1
q = 1. If f ∈ Hs

per show f̂ ∈ `q(Z). Further

show that the map f 7→ f̂ is continuous from Hs
per → `q.

(c) If n ∈ N is even, s > 1
2 −

1
n then show that Hs

per ⊆ Ln([0, 1]) and that the
inclusion map is continuous. [This is one of the Sobolev embedding theorems.]

Optional problems, and details in class I left for you to check.

∗ (a) If f, g ∈ L2
per([0, 1]), show that (f ∗ g)

∧
(n) = f̂(n)ĝ(n).

(b) If f, g ∈ L2
per([0, 1]), show that (fg)

∧
(n) = f̂ ∗ ĝ(n)

def
=
∑
m∈Z f̂(m)ĝ(n−m).

∗ (a) If α ∈ (0, 1), f ∈ Cαper([0, 1]), show that lim|n|→∞|n|
α|f̂(n)| = 0.

(b) Show by example that the converse of the previous part is false.

∗ For any s > 0 show that Hs
per is a closed subspace of L2.

∗ Let s > 1, and f ∈ Hs
per. Show that f has a weak derivative Df , and

Df ∈ Hs−1. Further, show that the map f 7→ Df : Hs → Hs−1 is linear
and continuous.

∗ Let s > 3/2 and f, g ∈ Hs
per. Show that fg ∈ H1, and further D(fg) =

(Df)g + f(Dg).

∗ Find a function f ∈ H1/2
per −L∞. [So the Sobolev embedding theorem is false for s = 1/2.]

∗ Let n ∈ N ∪ {0}, α ∈ [0, 1) s > 1/2 + n + α. Show that Hs
per ⊆ Cn,αper [0, 1] and

the inclusion map is continuous. [Recall Cn,αper [0, 1] is the set of all Cn periodic functions

on R (i.e. τ1f = f) whose nth derivative is Hölder continuous with exponent α.]

∗ Show that f ∈ Hs for all s > 0 ⇐⇒ f ∈ C∞per.
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Assignment 13: Assigned Wed 11/20. Due Wed 11/27

1. Let s > 3/2 and f, g ∈ Hs
per. Show that fg ∈ H1

per, and further D(fg) =
(Df)g + f(Dg). [This was optional on last times homework.]

2. (a) If f ∈ L1(Rd) and f is not identically 0 (a.e.), then show that Mf 6∈ L1(Rd).
The next few subparts outline a proof that for any p > 1, the maximal function
is an Lp bounded sublinear operator. Let p ∈ (1,∞), f ∈ Lp(Rd) and f > 0.

(b) Show that λ{Mf > α} 6 3d

(1−δ)α
∫
{f>δα} f , for any t > 0, δ ∈ (0, 1) and

f > 0 measurable.

(c) Let p ∈ (1,∞], and d ∈ N. Show that there exists a constant c = c(p, d)
such that ‖Mf‖p 6 c‖f‖p for all f ∈ Lp(Rd). [Hint: For p < ∞, use the

previous part, the identity ‖Mf‖pp =
∫∞
0 pαp−1λ{Mf > α} dα and optimise in δ.]

3. Let µ be a finite signed Borel measure on Rd such that µ ⊥ λ. Show that
D|µ| =∞, µ-almost everywhere.

4. Let α ∈ [0, d], and A ∈ B(Rd). If Hα(A) < ∞, show lim
r→0

Hα(A∩B(x,r))
cαrα

= 0 for

Hα-almost all x 6∈ A.

5. (a) Suppose f : [a, b] → R is a right continuous increasing function. Show
that there exists a finite Borel measure µ such that µ((x, y]) = f(y)− f(x)
for every x, y ∈ [a, b]. Show further that µ = µac + µs +

∑
i αiδai , where

µac � λ, αi > 0, ai ∈ [a, b),
∑
i αi < ∞, and µsc ⊥ λ is such that

µsc({x}) = 0 for all x ∈ R. [Hint: If f is strictly increasing and continuous, define

µ(A) = λ(f(A)), and consider its Lebesgue decomposition.]

(b) Let f : [a, b] → R be monotone. Show that f is differentiable almost

everywhere, f ′ ∈ L1([a, b]) and that |
∫ b
a
f ′| 6 |f(b)− f(a)|.

Optional problems, and details in class I left for you to check.

∗ Let cα = πα/2

Γ(1+α
2 ) be the normalization constant from the definition of Hα, the

Hausdorff measure of dimension α.

(a) If 0 < Hα(A) <∞, show lim sup
r→0

Hα(A∩B(x,r))
cαrα

∈ [2−α, 1] for Hα-a.e. x ∈ A.

(b) Show that there exists α < d and A ⊆ Rd with Hα(A) ∈ (0,∞) such that

lim inf
r→0

Hα(A ∩B(x, r))

cαrα
= 0 and lim sup

r→0

Hα(A ∩B(x, r))

cαrα
< 1,

for Hα-almost every x ∈ Rd.

(c) If C is the Cantor set, and α = log 2/ log 3, compute lim sup
r→0

Hα(C∩B(x,r))
cαrα

.

∗ (Infinite version of Vitali.) Suppose A ⊆ ∪Bα, where {Bα}α∈A is an infinite
collection of balls such that supλ(Bα) < ∞. Show that there exists A′ ⊆ A
such that the sub-collection {Bα′}α′∈A′ is disjoint and A ⊆ ∪5Bα′ .

∗ If f ∈ L1(Rd), show that Mf(x) > |f(x)| at all Lebesgue points of f .

Assignment 14: Assigned Wed 11/27. Due Wed 12/04

1. Let µ be a positive finite Borel measure on Rd, and α > 0. Show that for every
A ⊆ {Dµ > α}, we must have µ(A) > αλ(A).

2. (a) (Polar Coordinates.) Let f ∈ L1(R2). Show that∫
R2

f(x, y) dx dy =

∫
[0,∞)×[0,2π)

f(r cos θ, r sin θ) r dr dθ

(b) (Higher dimensional version.) Let f ∈ L1(Rd). Let S1 = {y ∈ Rd | |y| = 1}
be the d−1 dimensional sphere of radius 1. Show that there exists a unique
measure σ on S1 such that∫

Rd
f(x) dx =

∫
r∈[0,∞)

∫
y∈S1

f(ry) rd−1 dσ(y) dλ(r).

[Hint: For A ∈ B(S1) define σ(A) = λ(A∗) where A∗ = {rx | x ∈ A, r ∈ [0, 1]}. Now

for any B ∈ B(S1) prove the desired equality when f = χA where A = {rx | a < r <

b, x ∈ B}. ]

Optional problems, and details in class I left for you to check.

∗ Show that the arbitrary union of closed (non-degenerate) cells is Lebesgue mea-
surable.

∗ Find an example of E ∈ L(Rd) and x ∈ Rd such that limr→0
λ(E∩B(x,r))
λ(B(x,r)) does

not exist.

∗ Suppose f : R → R is measurable. Let α, β > 0 with α/β 6∈ Q. If f has period
α, and also has period β (i.e. for all x ∈ R, f(x) = f(x + α) = f(x + β)),
then show that f is constant almost everywhere. (But f need not be constant
everywhere!)

∗ We say the family {Er} shrinks nicely to x ∈ Rd if there exists δ > 0 such that
for all r, Er ⊆ B(x, r) and λ(Er) > δλ(B(x, r)). If {Er} shrinks nicely to x,
show that lim 1

λ(Er)

∫
Er
f = f(x) for all Lebesgue points of f .

∗ If f ∈ L1(Rd), show that Mf(x) > |f(x)| at all Lebesgue points of f .

∗ If f : [a, b] → R is absolutely continuous, then show that f is of bounded
variation, and that the variation is absolutely continuous. Conclude f can be
written as the difference of two monotone absolutely continuous functions.

∗ Let U, V ⊆ Rd be open and ϕ : U → V be C1 and injective. If x0 ∈ U and
∇ϕ(x0) is not invertible, show that

lim
r→0

λ(ϕ(B(x0, r)))

λ(B(x0, r))
= 0.
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