Math 720: Homework.

Do, but don't turn in optional problems. There is a firm 'no late homework' policy.

Assignment 1: Assigned Wed 08/28. Due Wed 09/04

Keep in mind there is a firm "no late homework" policy. Starred problems are optional; but I'd recommend looking at them. They often involve results I will use later in class.

- 1. Let μ be a positive measure on (X, Σ) .
 - (a) If $A_i \in \Sigma$ are such that $A_i \subseteq A_{i+1}$, show that $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$.
 - (b) If $A_i \in \Sigma$ are such that $A_i \supseteq A_{i+1}$, show that $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$, provided $\mu(A_1) < \infty$. Show by example this is false true if $\mu(A_1) = \infty$.
- 2. Prove any open subset of \mathbb{R}^d is a countable union of cells.
- 3. For each of the following sets, compute the Lebesgue outer measure. (a) Any countable set. (b) The Cantor set. (c) $\{x \in [0,1] \mid x \notin \mathbb{Q}\}$.
- 4. (a) If V ⊆ ℝ^d is a subspace with dim(V) < d, then show that λ*(V) = 0.
 (b) If P ⊆ ℝ² is a polygon show that area(P) = λ*(P).
- 5. Does there exist a σ -algebra whose cardinality is countably infinite? Disprove, or find an example.

Optional problems, and details in class I left for you to check.

- * Define $\mu(A)$ to be the number of elements in A. Show that μ is a measure on $(X, \mathcal{P}(X))$. (This is called the counting measure.)
- * Let $x_0 \in X$ be fixed. Define $\delta_{x_0}(A) = 1$ if $x_0 \in A$ and 0 otherwise. Show that δ_{x_0} is a measure on $(X, \mathcal{P}(X))$. (This is called the delta measure at x_0 .)
- * Show that $\lambda^*(a+E) = \lambda^*(E)$ for all $a \in \mathbb{R}^d$, $E \subseteq \mathbb{R}^d$.
- * Show that $\lambda^*(I) = \ell(I)$ for all cells. (I only proved it for closed cells in class.)
- * Show that $\mathcal{B}(\mathbb{R})$ has the same cardinality as \mathbb{R} .
- * (Challenge) Suppose $f_n : [0,1] \to [0,1]$ are all Riemann integrable, $0 \leq f_n \leq 1$ and $(f_n) \to 0$ pointwise. Show that $\lim_{n \to \infty} \int_0^1 f_n = 0$, using only standard tools from Riemann integration.

Assignment 2: Assigned Wed 09/04. Due Wed 09/11

- 1. (a) Say μ is a translation invariant measure on $(\mathbb{R}^d, \mathcal{L})$ (i.e. $\mu(x+A) = \mu(A)$ for all $A \in \mathcal{L}, x \in \mathbb{R}^d$) which is finite on bounded sets. Show that $\exists c \ge 0$ such that $\mu(A) = c\lambda(A)$.
 - (b) Let $T : \mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation, and $A \in \mathcal{L}$. Show that $T(A) \in \mathcal{L}$ and $\lambda(T(A)) = |\det(T)|\lambda(A)$. [HINT: Express T in terms of elementary transformations.]
- 2. (a) Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$ and $\rho(\emptyset) = 0$. For any $A \subseteq X$ define

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \rho(E_i) \, \Big| \, E_i \in \mathcal{E}, \text{ and } A \subseteq \bigcup_{1}^{\infty} E_j \right\}.$$

Show that μ^* is an outer measure.

(b) Let (X, d) be any metric space, $\delta > 0$, $\alpha \ge 0$ and define

$$\mathcal{E}_{\delta} = \{A \subseteq X \mid \operatorname{diam}(A) < \delta\} \text{ and } \rho_{\alpha}(A) = \frac{\pi^{\alpha/2}}{\Gamma(1 + \frac{\alpha}{2})} \Big(\frac{\operatorname{diam}(A)}{2}\Big)^{\alpha}.$$

Let $H^*_{\alpha,\delta}$ be the outer measure obtained with $\rho = \rho_{\alpha}$ and the collection of sets \mathcal{E}_{δ} . Define $H^*_{\alpha} = \lim_{\delta \to 0} H^*_{\alpha,\delta}$. Show H^*_{α} is an outer measure and restricts to a measure H_{α} on a σ -algebra that contains all Borel sets. The measure H_{α} is called the *Hausdorff measure of dimension* α .

- (c) If $X = \mathbb{R}^d$, and $\alpha = d$ show that H_d is a non-zero, finite constant multiple of the Lebesgue measure. [In fact $H_d = \lambda$ because of our choice of normalization constant, but the proof is much harder.]
- (d) Let $S \in \mathcal{B}(X)$. Show that there exists (a unique) $d \in [0, \infty]$ such that $H_{\alpha}(S) = \infty$ for all $\alpha \in (0, d)$, and $H_{\alpha}(S) = 0$ for all $\alpha \in (d, \infty)$. This number is called the *Hausdorff dimension* of the set S.
- (e) Compute the Hausdorff dimension of the Cantor set.
- 3. Using notation from the previous question, let $S_{\delta} = \{B(x,r) \mid x \in X, r \in (0,\delta)\}$. Using the collection of sets S_{δ} and the function $\rho = \rho_{\alpha}$, we obtain an outer measure $S^*_{\alpha,\delta}$. As before one can show that $S^*_{\alpha} = \lim_{\delta \to 0} S^*_{\alpha,\delta}$ is an outer measure, and gives a Borel measure S_{α} .
 - (a) Show by example $S_{\alpha} \neq H_{\alpha}$ in general.

1

(b) If $X = \mathbb{R}^d$ with the standard metric show that $S_d = \lambda$. [You may assume $\rho_d(B_r) = \lambda(B_r)$.]

Details in class I left for you to check. (Do it, but don't turn it in.)

* Using notation from the proof of Caratheodory, show that $\mu^*(A \cap (\bigcup_{i=1}^{\infty} E_i)) = \sum_{i=1}^{\infty} \mu^*(A \cap E_i)$. [We only proved it for A = X in class.]

Assignment 3: Assigned Wed 09/11. Due Wed 09/18

- 1. Let μ, ν be two measures on (X, Σ) . Suppose $\mathcal{C} \subseteq \Sigma$ is a π -system such that $\mu = \nu$ on \mathcal{C} .
 - (a) Suppose $\exists C_i \in \mathcal{C}$ such that $\bigcup_{i=1}^{\infty} C_i = X$ and $\mu(C_i) = \nu(C_i) < \infty$. Show that $\mu = \nu$ on $\sigma(\mathcal{C})$.
 - (b) If we drop the finiteness condition $\mu(C_i) < \infty$ is the previous subpart still true? Prove or find a counter example.
- 2. (a) Let X be a metric space and μ a Borel measure on X. Suppose there exists a sequence of sets $B_n \subseteq X$ such that $\overline{B}_n \subseteq \mathring{B}_{n+1}$, \overline{B}_n is compact, $X = \bigcup_1^\infty B_n$ and $\mu(B_n) < \infty$. Show that μ is regular.
 - (b) Show directly that for all $A \in \mathcal{L}$, $\lambda(A) = \sup\{\lambda(K)\}$ where $K \subseteq A$ is compact, and $\lambda(A) = \inf\{\lambda(U)\}$ where $U \supseteq A$ is open. [Note: The previous subpart will only show this for all $A \in \mathcal{B}(\mathbb{R}^d)$.]
- 3. (a) Find $E \in \mathcal{B}(\mathbb{R})$ so that for all a < b, we have $0 < \lambda(E \cap (a, b)) < b a$.
 - (b) Let $\kappa \in (0, 1/2)$. Does there exist $E \in \mathcal{B}(\mathbb{R})$ such that for all $a < b \in \mathbb{R}$, we have $\kappa(b-a) \leq \lambda(I \cap (a, b)) \leq (1-\kappa)(b-a)$? Prove it.
- 4. Let $A \in \mathcal{L}(\mathbb{R}^d)$. Prove every subset of A is Lebesgue measurable $\iff \lambda(A) = 0$.
- 5. (a) Prove $\mathcal{B}(\mathbb{R}^{m+n}) = \sigma(\{A \times B \mid A \in \mathcal{B}(\mathbb{R}^m) \& B \in \mathcal{B}(\mathbb{R}^n)\}).$
 - (b) Prove $\mathcal{L}(\mathbb{R}^{m+n}) \supseteq \sigma(\{A \times B \mid A \in \mathcal{L}(\mathbb{R}^m) \& B \in \mathcal{L}(\mathbb{R}^n)\}).$
 - (c) Show $\mathcal{L}(\mathbb{R}^2) \supseteq \mathcal{B}(\mathbb{R}^2)$.

Optional problems, and details in class I left for you to check.

* Let μ be a finite Borel measure on a compact metric space. Let

$$\mathcal{C} = \{A \mid \sup_{\substack{K \subseteq A \\ K \text{ compact}}} \mu(K) = \mu(A) = \inf_{\substack{U \supseteq A \\ U \text{ open}}} \mu(U) \}.$$

We saw in class that C is closed under countable increasing unions. Show C is closed under relative compliments.

- * Is any σ -finite Borel measure on \mathbb{R}^d regular?
- * Show that there exists $A \subseteq \mathbb{R}$ such that if $B \subseteq A$ and $B \in \mathcal{L}$ then $\lambda(B) = 0$, and further, if $B \subseteq A^c$ and $B \in \mathcal{L}$ then $\lambda(B) = 0$.

We say $\mathcal{A} \subseteq \mathcal{P}(X)$ is an algebra if $\emptyset \in \mathcal{A}$, and \mathcal{A} is closed under complements and *finite* unions. We say $\mu_0 : \mathcal{A} \to [0, \infty]$ is a (positive) *pre-measure* on \mathcal{A} if $\mu_0(\emptyset) = 0$, and for any countable disjoint sequence of sets sequence $A_i \in \mathcal{A}$ such that $\bigcup_1^{\infty} A_i \in \mathcal{A}$, we have $\mu_0(\bigcup_1^{\infty} A_i) = \sum_1^{\infty} \mu_0(A_i)$.

Namely, a pre-measure is a finitely additive measure on an algebra \mathcal{A} , which is also countably additive for disjoint unions that belong to the algebra.

* (Caratheodory extension) If \mathcal{A} is an algebra, and μ_0 is a pre-measure on \mathcal{A} , show that there exists a measure μ defined on $\sigma(\mathcal{A})$ that extends μ_0 .

Assignment 4: Assigned Wed 09/18. Due Wed 09/25

- 1. Let $C \subseteq \mathbb{R}^d$ be convex. Must C be Lebesgue measurable? Must C be Borel measurable? Prove or find counter examples. [The cases d = 1 and d > 1 are different.]
- 2. Let (X, Σ, μ) be a measure space. For $A \in P(X)$ define $\mu^*(A) = \inf\{\mu(E) \mid E \supseteq A \& E \in \Sigma\}$, and $\mu_*(A) = \sup\{\mu(E) \mid E \subseteq A \& E \in \Sigma\}$.
 - (a) Show that μ^* is an outer measure.
 - (b) Let $A_1, A_2, \dots \in \mathcal{P}(X)$ be disjoint. Show that $\mu_*(\bigcup_{i=1}^{\infty} A_i) \ge \sum_{i=1}^{\infty} \mu_*(A_i)$. [The set function μ_* is called an *inner measure*.]
 - (c) Show that for all $A \subseteq X$, $\mu^*(A) + \mu_*(A^c) = \mu(X)$.
 - (d) Let $A \subseteq \mathcal{P}(X)$ with $\mu^*(A) < \infty$. Show that $A \in \Sigma_{\mu} \iff \mu_*(A) = \mu^*(A)$.
- 3. Let $f: X \to \mathbb{R}$ be measurable, and $g: \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. True or false: $g \circ f: X \to \mathbb{R}$ is measurable? Prove or find a counter example.
- 4. Let (X, Σ) be a measure space, and $f, g: X \to [-\infty, \infty]$ be measurable. Suppose whenever $g = 0, f \neq 0$, and whenever $f = \pm \infty, g \in (-\infty, \infty)$. Show that $\frac{f}{g}: X \to [-\infty, \infty]$ is measurable. [Note that by the given data you will never get a 'meaningless' quotient of the form $\frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$. The remainder of the quotients (e.g. $\frac{1}{\infty}$) can be defined in the natural manner.]
- 5. Let $f_n : X \to \mathbb{R}$ be a sequence of measurable functions such that $(f_n) \to f$ almost everywhere (a.e.). Let $g : \mathbb{R} \to \mathbb{R}$ be a Borel function.
 - (a) If for a.e. $x \in X$, g is continuous at f(x), then show $(g \circ f_n) \to g \circ f$ a.e.
 - (b) Is the previous part true without the continuity assumption on g?

- * (An alternate approach to λ -systems.) Let $\mathcal{M} \subseteq P(X)$. We say \mathcal{M} is a Monotone Class, if whenever $A_i, B_i \in \mathcal{M}$ with $A_i \subseteq A_{i+1}$ and $B_i \supseteq B_{i+1}$ then $\bigcup_1^{\infty} A_i \in \mathcal{M}$ and $\bigcap_1^{\infty} B_i \in \mathcal{M}$. If $\mathcal{A} \subseteq P(X)$ is an algebra, then show that the smallest monotone class containing \mathcal{A} is exactly $\sigma(A)$. [You should also address existence of a smallest monotone class containing \mathcal{A} .]
- * Prove that the completion Σ_{μ} we defined in class is the smallest μ -complete σ -algebra that contains Σ .
- * Show that $f:X\to [-\infty,\infty]$ is measurable if and only if any of the following conditions hold
 - (a) $\{f < a\} \in \Sigma$ for all $a \in \mathbb{R}$. (b) $\{f > a\} \in \Sigma$ for all $a \in \mathbb{R}$. (c) $\{f \le a\} \in \Sigma$ for all $a \in \mathbb{R}$. (d) $\{f \ge a\} \in \Sigma$ for all $a \in \mathbb{R}$.
- * Let (f_n) is a sequence of real valued measurable functions. Define $f(x) = \lim f_n(x)$ if the limit exists, and $f(x) = \infty$ otherwise. Show that f is measurable.

Assignment 5: Assigned Wed 09/25. Due Wed 10/02

- 1. Let (X, Σ, μ) be a measure space, and $(X, \Sigma_{\mu}, \bar{\mu})$ it's completion. Show that $g: X \to [-\infty, \infty]$ is Σ_{μ} -measurable if and only if there exists two Σ -measurable functions $f, h: X \to [-\infty, \infty]$ such that f = h μ -almost everywhere, and $f \leq g \leq h$ everywhere.
- 2. Let μ be a regular (but not necessarily finite) Borel measure on a metric space X.
 - (a) True or false: For any $f : X \to \mathbb{R}$ measurable and $\varepsilon > 0$ there exists $g : X \to \mathbb{R}$ continuous such that $\mu\{f \neq g\} < \varepsilon$? Prove it or find a counter example.
 - (b) Do the previous subpart when $X = \mathbb{R}^d$.
- 3. Let for $n \in \mathbb{N}$ define $A_n = \bigcup_{k \in \mathbb{Z}} \left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right)$. If $E \in \mathcal{B}(\mathbb{R})$ does $\lim_{n \to \infty} \lambda(A_n \cap E)$ exist? Prove it.
- 4. If $f \ge 0$ is measurable show that $\int_X f d\mu = 0 \iff f = 0$ almost everywhere.
- 5. (a) Suppose $I \subseteq \mathbb{R}^d$ is a cell, and $f: I \to \mathbb{R}$ is Riemann integrable. Show that f is measurable, Lebesgue integrable and that the Lebesgue integral of f equals the Riemann integral.
 - (b) Is the previous subpart true if we only assume that an improper (Riemann) integral of f exists? Prove or find a counter example.

Optional problems, and details in class I left for you to check.

- * Let $f : [0,1] \to [0,1]$ be the Cantor function, and $g(x) = \inf\{f = x\}$. Show that f is (Hölder) continuous, and the range of g is the Cantor set. What is the largest exponent α for which f is Hölder- α continuous?
- * Let μ be the counting measure on \mathbb{N} , and $f: \mathbb{N} \to \mathbb{R}$ a function.
 - (a) If $\sum_{1}^{\infty} |f(n)| < \infty$, then show that $\sum_{n=1}^{\infty} f(n) = \int_{\mathbb{N}} f d\mu$.
 - (b) If the series $\sum_{n=1}^{\infty} f(n)$ is conditionally convergent, show that $\int_{\mathbb{N}} f d\mu$ is not defined.
- * Let X be a metric space $C \subseteq X$ be closed and $f: C \to \mathbb{R}$ be continuous.
 - (a) If $0 \leq f \leq 1$, then show that there exists $F : X \to \mathbb{R}$ continuous such that F(c) = f(c) for all $c \in C$. [HINT: Let F(x) = f(x) for all $x \in C$, and $F(x) = \inf\{f(c) + \frac{d(x,c)}{d(x,C)} 1 \mid c \in C\}$ for $x \notin C$.]
 - (b) (Tietze extension theorem in metric spaces) Do the previous subpart without assuming $0 \leq f \leq 1$. [HINT: Put $g = \tan^{-1}(f)$, construct G by the previous subpart and set $F = \tan(G)$.]
- * Finish the proof of Lusin's theorem. (I only proved it for bounded positive functions in class.)
- * Find a Borel measurable function $f:[0,1] \to \mathbb{R}$ which is not continuous almost everywhere.
- * Let $0 \leq s \leq t$ be two simple functions. Show $\int_X s \leq \int_X t$.
- * Show directly $\int_X \alpha f = \alpha \int_X f$ for any $\alpha \in \mathbb{R}$ and integrable function f.

Assignment 6: Assigned Wed 10/02. Due Never

In light of your **MIDTERM** this homework is optional.

- 1. (a) If f is a bounded measurable function and $\mu(X) < \infty$, then show $\int_X f d\mu = \inf\{\int_X t \, d\mu \mid t \ge f \text{ is simple}\}.$
 - (b) If f, g are bounded measurable functions and $\mu(X) < \infty$ show directly that $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$.
- 2. Let $f: [0, \infty) \to \mathbb{R}$ be a measurable function. We define the Laplace Transform of f to be the function $F(s) = \int_0^\infty \exp(-st)f(t) dt$ wherever defined.
 - (a) If $\int_0^\infty |f(t)| dt < \infty$, show that $F: [0, \infty) \to \mathbb{R}$ is continuous.
 - (b) If $\int_0^\infty t |f(t)| dt < \infty$, show that $F: [0, \infty) \to \mathbb{R}$ is differentiable.
 - (c) If f is continuous and bounded, compute $\lim_{s\to\infty} sF(s)$.

3. For
$$p \in \mathbb{R}$$
 define define $F(y) = \int_0^\infty \frac{\sin(xy)}{1+x^p} dx$.

- (a) For what $p \in \mathbb{R}$ is F defined? When defined, is F continuous? Prove it.
- (b) Show that F is differentiable for p > 2, and not differentiable when p = 2.
- 4. (Push forward measures) Let μ be a measure on (X, Σ) , and $f : X \to Y$ be any function. Define $\tau \subseteq \mathcal{P}(Y)$ by $\tau = \{A \subseteq Y \mid f^{-1}(A) \in \Sigma\}$. For $A \in \tau$ define $\nu(A) = \mu(f^{-1}(A))$.
 - (a) Show that τ is a σ -algebra, and ν is a measure on (Y, τ) . [The measure ν is called the push-forward of μ under f, and often denoted by $\mu_{f^{-1}}$.]
 - (b) If $g \in L^1(Y, \nu)$, then show that $g \circ f \in L^1(X, \mu)$ and $\int_X g \circ f \, d\mu = \int_Y g \, d\nu$.
- 5. (Pull back measures) Say ν is a measure on (Y, τ) and $f: X \to Y$ is surjective.
 - (a) Show that $\Sigma = \{A \subseteq X \mid f(A) \in \tau\}$ need not be a σ -algebra. If Σ is a σ -algebra, show that $\mu(A) = \nu(f(A))$ need not be a measure on (X, Σ) .
 - (b) Define instead $\Sigma = \{A \subseteq X \mid f^{-1}(f(A)) = A, \&f(A) \in \tau\}$, and $\mu(A) = \nu(f(A))$. Show that Σ is a σ -algebra and μ is a measure.
 - (c) If $g \in L^1(Y, \nu)$, then show that $g \circ f \in L^1(X, \mu)$ and $\int_X g \circ f \, d\mu = \int_Y g \, d\nu$.
- 6. (Linear change of variable) Let $f : \mathbb{R}^d \to \mathbb{R}$ be integrable.
 - (a) For any $y \in \mathbb{R}^d$ show that $\int_{\mathbb{R}^d} f(x+y) d\lambda(x) = \int_{\mathbb{R}^d} f(x) d\lambda(x)$.
 - (b) If $T : \mathbb{R}^d \to \mathbb{R}^d$ an invertible linear transformation, and $E \in \mathcal{L}(\mathbb{R}^d)$. Show that

$$\int_{T^{-1}(E)} (f \circ T) |\det T| \, d\lambda = \int_E f \, d\lambda$$

Details in class I left for you to check.

- * Check that if s, t are non-negative simple functions then $\int_X (s+t) = \int_X s + \int_X t$.
- * Show that there exists $f : \mathbb{R} \to [0, \infty)$ Borel measurable such that $\int_a^b f \, d\lambda = \infty$ for all $a, b \in \mathbb{R}$ with $a < b \in \mathbb{R}$. [HINT: Let $g(x) = \chi_{\{|x| < 1\}} |x|^{-1/2}$, and define $h(x) = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} 2^{-m-n} g(x m/n)$.]

Assignment 7: Assigned Wed 10/09. Due Wed 10/16

- 1. Do questions 3, 5, and 6 from HW6.
- 2. (a) (Jensen's inequality) Let $a, b \in [-\infty, \infty]$ with a < b and $\varphi : (a, b) \to \mathbb{R}$ be a convex function. If $\mu(X) = 1$ and $f : X \to (a, b)$ is integrable then show

$$\varphi\Big(\int_X f\,d\mu\Big) \leqslant \int_X \varphi \circ f\,d\mu.$$

- (b) If φ above is strictly convex, when can you have equality?
- 3. (a) Suppose $p, q, r \in [1, \infty]$ with p < q < r. Prove that for all $f \in L^p \cap L^r$, $f \in L^q$. Further, find $\theta \in (0, 1)$ such that $\|f\|_q \leq \|f\|_p^{\theta} \|f\|_r^{1-\theta}$.
 - (b) If for some $p \in [1, \infty)$, $f \in L^p(X) \cap L^\infty(X)$ show that $\lim_{q \to \infty} ||f||_q = ||f||_\infty$. [This sort of justifies the notation $\|\cdot\|_\infty$.]
 - (c) Let $p_0 \in (0,\infty]$, $\mu(X) = 1$ and $f \in L^{p_0}(X)$. Prove $\lim_{p\to 0^+} ||f||_p = \exp(\int_X \ln|f| \, d\mu)$.

Optional problems, and details in class I left for you to check.

- * Let $g \ge 0$ be measurable, and define $\nu(A) = \int_A g \, d\mu$. Show that ν is a measure, and $\int_E f \, d\nu = \int_E f g \, d\mu$.
- * Prove Hölder's inequality for p = 1 and $q = \infty$.
- * If $p_i, q \in [1, \infty]$ with $\sum_{1}^{N} \frac{1}{p_i} = \frac{1}{q}$, show that $\|\prod_{1}^{n} f_i\|_q \leq \prod \|f_i\|_{p_i}$.
- * Show that L^∞ is a Banach space.
- * For $p \in [0, 1)$ show that you need not have $||f + g||_p \leq ||f||_p + ||g||_p$.
- * Let $p, q \in (1, \infty)$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p$ and $g \in L^q$. Show that $\int_X |fg| d\mu = ||f||_p ||g||_q$ if and only if there exists constants $\alpha, \beta \ge 0$ such that $\alpha f^p = \beta g^q$.
- * (a) If X is σ -finite, then show $\|f\|_{\infty} = \sup_{g \in L^1 \{0\}} \frac{1}{\|g\|_1} \int_X fg \, d\mu$.
 - (b) Show that the previous subpart is false if X is not σ -finite.

Assignment 8: Assigned Wed 10/16. Due Wed 10/23

- 1. (a) If $\mu(X) < \infty$, $1 \leq p < q \leq \infty$, show $L^q(X) \subseteq L^p(X)$ and the inclusion map from $L^q(X) \to L^p(X)$ is continuous. Find an example where $L^q(X) \subsetneq L^p(X)$. [HINT: Show $\|f\|_p \leq \mu(X)^{\frac{1}{p} \frac{1}{q}} \|f\|_q$.]
 - (b) Let $\ell^p = L^p(\mathbb{N})$ with respect to the counting measure. If $1 \leq p < q$ show that $\ell^p \subsetneq \ell^q$. Is the inclusion map $\ell^p \hookrightarrow \ell^q$ continuous? Prove your answer.
- 2. (a) Suppose $p \in [1, \infty)$, and $f \in L^p(\mathbb{R}^d, \lambda)$. For $y \in \mathbb{R}^d$, let $\tau_y f : \mathbb{R}^d \to \mathbb{R}$ be defined by $\tau_y f(x) = f(x-y)$. Show that $(\tau_y f) \to f$ in L^p as $|y| \to 0$.
 - (b) What happens for $p = \infty$?
- 3. Suppose $\Sigma = \sigma(\mathcal{C})$, where $\mathcal{C} \subseteq \mathcal{P}(X)$ is countable. If μ is a σ -finite measure and $1 \leq p < \infty$, show that $L^p(X)$ is separable (i.e. has a countable dense subset).
- 4. (a) Suppose $\lim_{\lambda \to \infty} \sup_n \int_{|f_n| > \lambda} |f_n| \, d\mu = 0$. Show that there exists an increasing function φ with $\varphi(\lambda)/\lambda \to \infty$ as $\lambda \to \infty$, such that $\sup_n \int_X \varphi(|f_n|) < \infty$.
 - (b) Suppose $\{f_n\}$ is uniformly integrable, and $\sup_n \int |f_n| < \infty$. Show that $\lim_{\lambda \to \infty} \sup_n \int_{|f_n| > \lambda} |f_n| = 0$.
 - (c) Show that the previous part fails without the assumption $\sup_n \int |f_n| < \infty$.
- 5. Let $e_n(x) = e^{2\pi i nx}$, X = [0, 1]. For what $p \in [1, \infty]$ does $\{e_n\}$ have a convergent subsequence in $L^p(X, \lambda)$? Prove it.

- * In Vitali's convergence theorem prove that the assumption $f \in L^1$ is unnecessary.
- * If $(f_n) \to f$ in L^1 , show that $\{f_n\}$ is uniformly integrable. [This is part of Vitali's theorem which I didn't have time to prove in class.]
- * Show that if $(f_n) \to f$ in measure, then (f_n) need not converge to f in L^p .
- * Finish the proof that $C_c(X)$ is dense in L^p . [I only did the case when X is compact in class.]
- * Show that simple functions are dense in L^{∞} .
- * Show that $C_c(\mathbb{R})$ is not dense in $L^{\infty}(\mathbb{R})$.
- * Show that $L^{\infty}(\mathbb{R})$ is not separable.

Assignment 9: Assigned Wed 10/23. Due Wed 10/30

- 1. Recall we defined the variation of μ by $|\mu| = \mu^+ + \mu^-$, and the total variation by $\|\mu\| = |\mu|(X)$. (You should check that these are well defined.)
 - (a) Let \mathcal{M} be the space of all finite signed measures on (X, Σ) . Show that \mathcal{M} with total variation norm (i.e. with $\|\mu\| = |\mu|(X)$) is a Banach space.
 - (b) Show that $(\mu_n) \to \mu$ if and only if $(\mu_n(A)) \to \mu(A)$ uniformly in $A, \forall A \in \Sigma$.
- 2. (a) For a signed measure, we define $\int_X f d\mu = \int_X f d\mu^+ \int_X f d\mu^-$. Suppose $(f_n) \to f, (g_n) \to g$, and $|f_n| \leq g_n$ almost everywhere with respect to $|\mu|$. If $\lim_{X} \int_X g_n d|\mu| = \int_X g d|\mu| < \infty$, show that $\lim_{X} \int_X f_n d\mu = \int_X f d\mu$.
 - (b) Suppose $f, f_n \in L^1$, and $(f_n) \to f$ almost everywhere. Show that $\lim \int |f_n f| d|\mu| = 0$ if and only if $\lim \int |f_n| d|\mu| = \int |f| d|\mu|$.
- 3. (a) If μ is a positive σ -finite measure, and ν is a finite signed measure such that $|\nu| \ll \mu$, show that there exists $f \in L^1(X, \mu)$ such that $d\nu = f d\mu$.
 - (b) Compute $\frac{d\nu}{d|\nu|}$ in terms of the Hanh decomposition of ν . [NOTATION: We say $g = \frac{d\nu}{d\mu}$ if $d\nu = g d\mu$.]
- 4. (a) Let ν_1 and ν_2 be two finite signed measures on X. Show that there exists a finite signed measure $\nu_1 \vee \nu_2$ such that $\nu_1 \vee \nu_2(A) \ge \nu_1(A) \vee \nu_2(A)$, and for any other finite signed measure ν such that $\nu(A) \ge \nu_1(A) \vee \nu_2(A)$ we ust have $\nu_1 \vee \nu_2 \le \nu$.
 - (b) If ν_1, ν_2 above are absolutely continuous with respect to a positive σ -finite measure μ , prove $\nu_1 \vee \nu_2 \ll \mu$ and express $\frac{d(\nu_1 \vee \nu_2)}{d\mu}$ in terms of $\frac{d\nu_1}{d\mu}$ and $\frac{d\nu_2}{d\mu}$.
- 5. Let (Ω, \mathcal{F}, P) be a measure space with $P(\Omega) = 1$, and $X \in L^1(\Omega, \mathcal{F}, P)$. [The probabilistic interpretation is that Ω is the sample space, $A \in \mathcal{F}$ is an event, X is a random variable, and $P(X \in B)$ is the chance that $X \in B$, where $B \in \mathcal{B}(\mathbb{R})$.]
 - (a) Suppose $\mathcal{G} \subseteq \mathcal{F}$ is a σ -sub-algebra of F. Show that there exists a unique \mathcal{G} -measurable function Y such that $\int_A Y \, dP = \int_A X \, dP$ for all $A \in \mathcal{G}$. [Y is called the *conditional expectation* of X given \mathcal{G} , and denoted by $E(X | \mathcal{G})$.]
 - (b) (Tower property) If $\mathcal{H} \subseteq \mathcal{G}$ is a σ -sub-algebra, show that $E(X | \mathcal{H}) = E(E(X | \mathcal{G}) | \mathcal{H})$ almost everywhere.
 - (c) (Conditional Jensen) If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex, show that $\varphi(E(X | \mathcal{G})) \leq E(\varphi(X) | G)$ almost everywhere.
 - (d) Suppose $X \in L^2(\Omega, \mathcal{F}, P)$. Show that $E(X | \mathcal{G})$ is the L^2 -orthogonal projection of X onto the subspace $L^2(\Omega, \mathcal{G})$. [Namely show $E(X | \mathcal{G}) \in L^2(\Omega, \mathcal{G})$, and $\int_{\Omega} (X E(X | \mathcal{G}))Y dP = 0$ for all $Y \in L^2(\Omega, \mathcal{G})$.]

Optional problems, and details in class I left for you to check.

- * In the proof of the Hanh decomposition, prove the following: Say $\mu(X) > -\infty$, and $\alpha = \inf\{\mu(B)\}$. Let B'_n be a sequence of negative sets such that $\mu(B'_n) \to \alpha$. Let $N = \bigcup B'_n$. Show $\mu(N) = \alpha$.
- * Prove the Hanh decomposition is unique up to null sets.
- * Prove uniqueness of the Jordan decomposition.
- * Show that the Radon-Nikodym theorem need not hold if μ, ν are not σ -finite.

Assignment 10: Assigned Wed 10/30. Due Wed 11/06

- 1. (a) Let $p \in [1, \infty)$ and q be conjugate Hölder exponent. If X is σ -finite, show that there exists a bijective linear isometry between $(L^p)^*$ and L^q .
 - (b) The above result is *false* for $p = \infty$ even when $\mu(X) < \infty$. Find where our proof from class (when $\mu(X) < \infty$) fails when $p = \infty$.
 - (c) We can (partially) construct a counter example on ℓ^{∞} as follows. The Hanh-Banach theorem shows that there exists exists $T \in (\ell^{\infty})^*$ such that $Ta = \lim a_n$, for all $a = (a_n) \in \ell^{\infty}$ such that $\lim a_n$ exists and is finite. Show that there does not exist $b \in \ell^1$ such that $Ta = \sum a_n b_n$ for all $a \in \ell^{\infty}$.
- 2. (a) Suppose $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} |a_{m,n}|) < \infty$. Show that $\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{m,n}) = \sum_{n=1}^{\infty} (\sum_{m=1}^{\infty} a_{m,n})$.
 - (b) Give a counter example to (a) if we only assume $\sum_{m} \sum_{n} a_{m,n} < \infty$. Find a counter example where both iterated sums are finite.
- 3. (a) If X and Y are not σ -finite, show that Fubini's theorem need not hold.
 - (b) If $\int_{[-1,1]^2} f \, d\lambda$ is not assumed to exist (in the extended sense), show that both iterated integrals can exist, be finite, but need not be equal.
- 4. (Fubini for completions.) Suppose (X, Σ, μ) and (Y, τ, ν) are two σ -finite, complete measure spaces. Let $\varpi = (\Sigma \otimes \tau)_{\pi}$ denote the completion of $\Sigma \otimes \tau$ with respect to the product measure $\pi = \mu \times \nu$.
 - (a) Show that $\Sigma \otimes \tau$ need not be π -complete (i.e. $\varpi \supseteq \Sigma \otimes \tau$ in general).
 - (b) Suppose $f: X \times Y \to [-\infty, \infty]$ is \mathcal{F} -measurable. Define as usual the slices $\varphi_{f,x}: Y \to [0,\infty]$ by $\varphi_{f,x}(y) = f(x,y)$, and similarly $\psi_{f,y}(x) = f(x,y)$. Show that for μ -almost all $x \in X$, $\varphi_{f,x}$ is an τ -measurable, and for ν -almost all $y, \psi_{f,y}$ is an Σ -measurable.
 - (c) Suppose f is integrable on $X \times Y$ in the extended sense. Define $F(x) = \int_Y f(x,y) d\nu(y)$ and $G(y) = \int_X f(x,y) d\mu(x)$. Show F is defined μ -a.e. and Σ -measurable. Similarly show G is defined ν -a.e., and τ -measurable. Further, show and that $\int_X F d\mu = \int_Y G d\nu = \int_{X \times Y} f d(\mu \times \nu)$.
- 5. Let (X, Σ, μ) , (Y, τ, ν) be two σ -finite measure spaces, $p \in [1, \infty]$, and $f : X \times Y \to \mathbb{R}$ is $\Sigma \otimes \tau$ measurable. Let $F(x) = \int_Y f(x, y) d\nu(y)$, and $\psi_{y,f}$ be the slice of f defined by $\psi_{y,f}(x) = f(x, y)$. Show that $\|F\|_{L^p(X)} \leq \int_Y \|\psi_{y,f}\|_{L^p(X)} d\nu(y)$. [When $Y = \{1, 2\}$ with the counting measure, this is exactly Minkowski's triangle inequality.]

- * Let $\mu(X) < \infty$, $p \in [1, \infty)$ and $T \in (L^p)^*$. Let $\nu(A) = T(\chi_A)$. We've seen in class that $\nu \ll \mu$ and so $d\nu = g \, d\mu$ for some $g \in L^1(\mu)$.
 - (a) Show that $Tf = \int_X fg \, d\mu$ for all f simple.
 - (b) If $\frac{1}{p} + \frac{1}{q} = 1$ show $||g||_q = \sup\{\int_X sg\}$, where the supremum runs over all simple functions s such that $||s||_p \leq 1$. Conclude $g \in L^q$ and $||g||_q \leq ||T||$.
 - (c) Show that $Tf = \int_X fg \, d\mu$ for all $f \in L^p$, to conclude the proof.
- * Show that the Lebesgue measure on \mathbb{R}^{m+n} is the product of the Lebesgue measures on \mathbb{R}^m and \mathbb{R}^n respectively.

Assignment 11: Assigned Wed 11/06. Due Wed 11/13

- 1. If $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p$, $g \in L^q$ show that f * g is bounded and continuous. If $p, q < \infty$, show further $f * g(x) \to 0$ as $|x| \to \infty$.
- 2. Let $\{\varphi_n\}$ be an approximate identity.
 - (a) If $f \in C(\mathbb{R}^d) \cap L^{\infty}$, show $f * \varphi_n \to f$ pointwise.
 - (b) For $\alpha \in (0,1)$ define

$$||f||_{C^{\alpha}} = ||f||_{\infty} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}, \text{ and } C^{\alpha} = \{f : \mathbb{R}^d \to \mathbb{R} \mid ||f||_{C^{\alpha}} < \infty\}.$$

If $f \in C^{\alpha}$, show that $f * \varphi_n \in C^{\alpha}$ and $f * \varphi_n \to f$ in C^{α} .

- 3. Define $\mathcal{S}(\mathbb{R}^d) = \{f \in C^{\infty}(\mathbb{R}^d) \mid \forall m, \alpha, \sup_x (1 + |x|^m) | D^{\alpha} f(x) | < \infty \}$. Here $m \in \mathbb{N} \cup \{0\}$, and $\alpha = (\alpha_1, \dots, \alpha_d) \in (\mathbb{N} \cup \{0\})^d$ is a multi-index, and $D^{\alpha} f = \partial_1^{\alpha_1} \cdots \partial_d^{\alpha_d} f$. The space \mathcal{S} is called the *Schwartz Space*.
 - (a) If $p \in [1, \infty)$, $f \in L^p(\mathbb{R}^d)$, $g \in \mathcal{S}(\mathbb{R}^d)$, show that $f * g \in C^{\infty}(\mathbb{R}^d)$, and further $D^{\alpha}(f * g) = f * (D^{\alpha}g)$.
 - (b) For $p \in [1, \infty)$, show that C_c^{∞} and \mathcal{S} are dense subsets of L^p
- 4. Let $A, B \in \mathcal{L}(\mathbb{R})$ be measurable, and define $A + B = \{a + b \mid a \in A, b \in B\}$. If $\lambda(A) > 0$ and $\lambda(B) > 0$ show A + B contains an interval.

Though I encourage you to check the properties on the Dirichlet and Fejér kernels stated in the optional problems, you may assume them here without proof.

Let $C_{\text{per}} = \{f \in C(\mathbb{R}) \mid \tau_1 f = f\}$ denote all continuous functions with period 1. Since the Fejér kernels are an approximate identity, it immediately follows that the Cesàro sums $\sigma_N f \to f$ uniformly, for any $f \in C_{\text{per}}$. For general $f \in C_{\text{per}}$, however, the partial sums $S_N f$ need not converge to f even pointwise. (In fact, there exist many $f \in C_{\text{per}}$ such that $S_N f$ is divergent on a dense G_{δ} .) If, however, f is a little bit better than continuous, then the Fourier series of f converges to f pointwise.

5. Let $\alpha \in (0,1)$ and $f \in C_{\text{per}}^{\alpha}$. Show that $(S_N f) \to f$ uniformly, as $N \to \infty$.

Optional problems, and details in class I left for you to check.

* If $f \in L^p$, $g \in L^q$ with $p, q \in [1, \infty]$ and $1/p + 1/q \ge 1$, show that f * g = g * f.

- * If $f \in L^p$, $g \in L^q$, $h \in L^r$ with $p, q, r \in [1, \infty]$ and $1/p + 1/q + 1/r \ge 2$, show that (f * g) * h = f * (g * h).
- * Define the Derichlet kernel by $D_N(x) = \sum_{-N}^N \exp(2\pi i n x)$.

(a) Show that
$$S_N f(x) = D_N * f(x) \stackrel{\text{def}}{=} \int_0^1 f(y) D_N(x-y) \, dy$$
. [Recall, $S_N f = \sum_{-N}^N \hat{f}(n) e_n$, where $e_n(x) = e^{2\pi i n x}$, and $\hat{f}(n) = \langle f, e_n \rangle = \int_0^1 f(y) \bar{e}_n(y) \, dy$.]

(b) Show that
$$D_N(x) = \frac{\sin((2N+1)\pi x)}{\sin(\pi x)}$$
. Further show $\lim_{N \to \infty} \int_{\varepsilon}^{1-\varepsilon} |D_N| = \infty$

* Define Fejér kernel by $F_N = \frac{1}{N} \sum_0^{N-1} D_n$.

(a) Show that
$$\sigma_N f \stackrel{\text{def}}{=} \frac{1}{N} \sum_0^{N-1} S_n f = F_N * f.$$

(b) Show that $F_n(\pi) = \frac{\sin^2(N\pi x)}{2\pi x^2}$ and that $\{F_n\}$ is an approximate

(b) Show that $F_N(x) = \frac{\sin^2(N\pi x)}{N\sin^2(\pi x)}$, and that $\{F_N\}$ is an approximate identity.

Assignment 12: Assigned Wed 11/13. Due Wed 11/20

- 1. Let μ be a finite signed Borel measure on [0,1]. If $\forall n \in \mathbb{Z} \ \hat{\mu}(n) = 0$, show $\mu = 0$.
- 2. Let $0\leqslant r< s.$ Show that any bounded sequence in $H^s_{\rm per}$ has a subsequence that is convergent in $H^r_{\rm per}.$
- 3. Let $f \in L^2([0,1])$. Show that there exists a unique $u \in C^{\infty}(\mathbb{R} \times (0,\infty))$ such that u(x+1,t) = u(x,t), $\lim_{t\to 0^+} ||u(\cdot,t) f(\cdot)||_{L^2_{per}} = 0$, and $\partial_t u \partial_x^2 u = 0$. [HINT: You may assume the result of the optional problems.]
- 4. Let $s \in (0, 1]$ and $f \in L^2_{per}$. Prove $f \in H^s_{per} \iff \sup_{0 < h \leq 1} h^{-\alpha} \|\tau_h f f\|_{L^2} < \infty$. [UPDATE: The converse is false. A correction with solution will be posted.]
- 5. (a) Let $n \in \mathbb{N}$ be even, $\frac{1}{n} + \frac{1}{n'} = 1$. If $\hat{f} \in \ell^{n'}(\mathbb{Z})$, show that $f \in L^n_{\text{per}}([0,1])$ and $\|f\|_{L^n} \leq \|\hat{f}\|_{\ell^{n'}}$. [HINT: Let n = 2m. Then $\|f\|_{L^n}^n = \|(f^m)^{\wedge}\|_{\ell^2}^2$.]
 - (b) Let $s > \frac{1}{2} \frac{1}{p} \ge 0$, and $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in H^s_{\text{per}}$ show $\hat{f} \in \ell^q(\mathbb{Z})$. Further show that the map $f \mapsto \hat{f}$ is continuous from $H^s_{\text{per}} \to \ell^q$.
 - (c) If $n \in \mathbb{N}$ is even, $s > \frac{1}{2} \frac{1}{n}$ then show that $H^s_{\text{per}} \subseteq L^n([0,1])$ and that the inclusion map is continuous. [This is one of the Sobolev embedding theorems.]

- * (a) If $f, g \in L^2_{\text{per}}([0,1])$, show that $(f * g)^{\wedge}(n) = \hat{f}(n)\hat{g}(n)$. (b) If $f, g \in L^2_{\text{per}}([0,1])$, show that $(fg)^{\wedge}(n) = \hat{f} * \hat{g}(n) \stackrel{\text{def}}{=} \sum_{m \in \mathbb{Z}} \hat{f}(m)\hat{g}(n-m)$.
- * (a) If $\alpha \in (0,1)$, $f \in C^{\alpha}_{\text{per}}([0,1])$, show that $\lim_{|n|\to\infty} |n|^{\alpha} |\hat{f}(n)| = 0$.
 - (b) Show by example that the converse of the previous part is false.
- * For any $s \ge 0$ show that H^s_{per} is a closed subspace of L^2 .
- * Let $s \ge 1$, and $f \in H^s_{\text{per}}$. Show that f has a weak derivative Df, and $Df \in H^{s-1}$. Further, show that the map $f \mapsto Df : H^s \to H^{s-1}$ is linear and continuous.
- * Let s > 3/2 and $f, g \in H^s_{per}$. Show that $fg \in H^1$, and further D(fg) = (Df)g + f(Dg).
- * Find a function $f \in H^{1/2}_{\text{per}} L^{\infty}$. [So the Sobolev embedding theorem is false for s = 1/2.]
- * Let $n \in \mathbb{N} \cup \{0\}$, $\alpha \in [0, 1)$ $s > 1/2 + n + \alpha$. Show that $H_{\text{per}}^s \subseteq C_{\text{per}}^{n,\alpha}[0, 1]$ and the inclusion map is continuous. [Recall $C_{\text{per}}^{n,\alpha}[0, 1]$ is the set of all C^n periodic functions on \mathbb{R} (i.e. $\tau_1 f = f$) whose n^{th} derivative is Hölder continuous with exponent α .]
- * Show that $f \in H^s$ for all $s \ge 0 \iff f \in C^{\infty}_{\text{per}}$.

Assignment 13: Assigned Wed 11/20. Due Wed 11/27

- 1. Let s > 3/2 and $f, g \in H^s_{per}$. Show that $fg \in H^1_{per}$, and further D(fg) = (Df)g + f(Dg). [This was optional on last times homework.]
- 2. (a) If $f \in L^1(\mathbb{R}^d)$ and f is not identically 0 (a.e.), then show that $Mf \notin L^1(\mathbb{R}^d)$. The next few subparts outline a proof that for any p > 1, the maximal function is an L^p bounded sublinear operator. Let $p \in (1, \infty)$, $f \in L^p(\mathbb{R}^d)$ and $f \ge 0$.
 - (b) Show that $\lambda\{Mf > \alpha\} \leq \frac{3^d}{(1-\delta)\alpha} \int_{\{f > \delta\alpha\}} f$, for any t > 0, $\delta \in (0,1)$ and $f \geq 0$ measurable.
 - (c) Let $p \in (1, \infty]$, and $d \in \mathbb{N}$. Show that there exists a constant c = c(p, d) such that $\|Mf\|_p \leq c \|f\|_p$ for all $f \in L^p(\mathbb{R}^d)$. [HINT: For $p < \infty$, use the previous part, the identity $\|Mf\|_p^p = \int_0^\infty p \alpha^{p-1} \lambda \{Mf > \alpha\} d\alpha$ and optimise in δ .]
- 3. Let μ be a finite signed Borel measure on \mathbb{R}^d such that $\mu \perp \lambda$. Show that $D|\mu| = \infty$, μ -almost everywhere.
- 4. Let $\alpha \in [0, d]$, and $A \in \mathcal{B}(\mathbb{R}^d)$. If $H_{\alpha}(A) < \infty$, show $\lim_{r \to 0} \frac{H_{\alpha}(A \cap B(x, r))}{c_{\alpha} r^{\alpha}} = 0$ for H_{α} -almost all $x \notin A$.
- 5. (a) Suppose $f : [a,b] \to \mathbb{R}$ is a right continuous increasing function. Show that there exists a finite Borel measure μ such that $\mu((x,y]) = f(y) - f(x)$ for every $x, y \in [a,b]$. Show further that $\mu = \mu_{ac} + \mu_s + \sum_i \alpha_i \delta_{a_i}$, where $\mu_{ac} \ll \lambda, \ \alpha_i > 0, \ a_i \in [a,b), \ \sum_i \alpha_i < \infty$, and $\mu_{sc} \perp \lambda$ is such that $\mu_{sc}(\{x\}) = 0$ for all $x \in \mathbb{R}$. [HINT: If f is strictly increasing and continuous, define $\mu(A) = \lambda(f(A))$, and consider its Lebesgue decomposition.]
 - (b) Let $f : [a, b] \to \mathbb{R}$ be monotone. Show that f is differentiable almost everywhere, $f' \in L^1([a, b])$ and that $|\int_a^b f'| \leq |f(b) f(a)|$.

Optional problems, and details in class I left for you to check.

* Let $c_{\alpha} = \frac{\pi^{\alpha/2}}{\Gamma(1+\frac{\alpha}{2})}$ be the normalization constant from the definition of H_{α} , the Hausdorff measure of dimension α .

(a) If
$$0 < H_{\alpha}(A) < \infty$$
, show $\limsup_{r \to 0} \frac{H_{\alpha}(A \cap B(x,r))}{c_{\alpha}r^{\alpha}} \in [2^{-\alpha}, 1]$ for H_{α} -a.e. $x \in A$.

(b) Show that there exists $\alpha < d$ and $A \subseteq \mathbb{R}^d$ with $H_{\alpha}(A) \in (0, \infty)$ such that

$$\liminf_{r\to 0} \frac{H_\alpha(A\cap B(x,r))}{c_\alpha r^\alpha} = 0 \quad \text{and} \quad \limsup_{r\to 0} \frac{H_\alpha(A\cap B(x,r))}{c_\alpha r^\alpha} < 1,$$

for H^{α} -almost every $x \in \mathbb{R}^d$.

(c) If C is the Cantor set, and $\alpha = \log 2/\log 3$, compute $\limsup_{r \to 0} \frac{H_{\alpha}(C \cap B(x,r))}{c_{\alpha}r^{\alpha}}$.

- * (Infinite version of Vitali.) Suppose $A \subseteq \bigcup B_{\alpha}$, where $\{B_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an infinite collection of balls such that $\sup \lambda(B_{\alpha}) < \infty$. Show that there exists $\mathcal{A}' \subseteq \mathcal{A}$ such that the sub-collection $\{B_{\alpha'}\}_{\alpha' \in \mathcal{A}'}$ is disjoint and $A \subseteq \bigcup 5B_{\alpha'}$.
- * If $f \in L^1(\mathbb{R}^d)$, show that $Mf(x) \ge |f(x)|$ at all Lebesgue points of f.

Assignment 14: Assigned Wed 11/27. Due Wed 12/04

- 1. Let μ be a positive finite Borel measure on \mathbb{R}^d , and $\alpha > 0$. Show that for every $A \subseteq \{D\mu > \alpha\}$, we must have $\mu(A) \ge \alpha \lambda(A)$.
- 2. (a) (Polar Coordinates.) Let $f \in L^1(\mathbb{R}^2)$. Show that

$$\int_{\mathbb{R}^2} f(x,y) \, dx \, dy = \int_{[0,\infty) \times [0,2\pi)} f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

(b) (Higher dimensional version.) Let $f \in L^1(\mathbb{R}^d)$. Let $S_1 = \{y \in \mathbb{R}^d \mid |y| = 1\}$ be the d-1 dimensional sphere of radius 1. Show that there exists a unique measure σ on S_1 such that

$$\int_{\mathbb{R}^d} f(x) \, dx = \int_{r \in [0,\infty)} \int_{y \in S_1} f(ry) \, r^{d-1} \, d\sigma(y) \, d\lambda(r).$$

[HINT: For $A \in \mathcal{B}(S_1)$ define $\sigma(A) = \lambda(A^*)$ where $A^* = \{rx \mid x \in A, r \in [0, 1]\}$. Now for any $B \in \mathcal{B}(S_1)$ prove the desired equality when $f = \chi_A$ where $A = \{rx \mid a < r < b, x \in B\}$.]

- * Show that the arbitrary union of closed (non-degenerate) cells is Lebesgue measurable.
- * Find an example of $E \in \mathcal{L}(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$ such that $\lim_{r \to 0} \frac{\lambda(E \cap B(x,r))}{\lambda(B(x,r))}$ does not exist.
- * Suppose $f : \mathbb{R} \to \mathbb{R}$ is measurable. Let $\alpha, \beta > 0$ with $\alpha/\beta \notin \mathbb{Q}$. If f has period α , and also has period β (i.e. for all $x \in \mathbb{R}$, $f(x) = f(x + \alpha) = f(x + \beta)$), then show that f is constant almost everywhere. (But f need not be constant everywhere!)
- * We say the family $\{E_r\}$ shrinks nicely to $x \in \mathbb{R}^d$ if there exists $\delta > 0$ such that for all $r, E_r \subseteq B(x, r)$ and $\lambda(E_r) > \delta\lambda(B(x, r))$. If $\{E_r\}$ shrinks nicely to x, show that $\lim \frac{1}{\lambda(E_r)} \int_{E_r} f = f(x)$ for all Lebesgue points of f.
- * If $f \in L^1(\mathbb{R}^d)$, show that $Mf(x) \ge |f(x)|$ at all Lebesgue points of f.
- * If $f : [a, b] \to \mathbb{R}$ is absolutely continuous, then show that f is of bounded variation, and that the variation is absolutely continuous. Conclude f can be written as the difference of two monotone absolutely continuous functions.
- * Let $U, V \subseteq \mathbb{R}^d$ be open and $\varphi : U \to V$ be C^1 and injective. If $x_0 \in U$ and $\nabla \varphi(x_0)$ is not invertible, show that

$$\lim_{r \to 0} \frac{\lambda(\varphi(B(x_0, r)))}{\lambda(B(x_0, r))} = 0$$