Math 720: Homework.

Do, but don’t turn in optional problems. There is a firm ‘no late homework’ policy.

Assignment 1: Assigned Wed 09/05. Due Wed 09/12

Following the notation of Cohn, I use A to denote the Lebesgue measure.

1.

2.

For each of the following sets, compute the Lebesgue outer measure.
a) Any countable set. (b) The Cantor set. (c) {z€10,1] |z & Q}.

(

(a) If V C R? is a subspace with dim(V') < d, then show that A(V') = 0.

(b) If P C R? is a polygon show that area(P) = \(P).

(a) Say u is a translation invariant measure on (R% L) (i.e. u(x + A) = u(A)
for all A € £, x € R?) which is finite on bounded sets. Show that 3¢ > 0
such that u(A) = cA(4).

(b) Let T : RY — R? be an orthogonal linear transformation, and A € £. Show

that T(A) € L and )\(T(A)) = /\(A) [HINT: Express T in terms of elementary

transformations.]

(a) Let £ CP(X), and p: & — [0,00] be such that ) € £, X € £ and p()) = 0.
For any A C X define

p(4) = nt{ Y p(E)

E;e€ and AC DEJ}
1

Show that p* is an outer measure.

(b) Let (X,d) be any metric space, 6 > 0 and define & = {B(z,r) |z € X,r €
(0,6)}. Given a > 0 define p(B(z,7)) = cor®, where ¢, = 72 /T(1 + a/2)
is a normalization constant. Let H 5 be the outer measure obtained with
this choice of p and the collection of sets £s. Define HX = lims_,¢ H;,(;.
Show H} is an outer measure and restricts to a measure H, on a o-algebra
that contains all Borel sets. The measure H,, is called the Hausdorff mea-
sure of dimension «. [Don’t reprove Caratheodory.]

(c) If X = R? and o = d show that Hy is the Lebesgue measure.

(d) Let S € B(X). Show that there exists (a unique) d € [0,00] such that
H,(S) = oo for all @ € (0,d), and H,(S) = 0 for all « € (d,00). This
number is called the Hausdorff dimension of the set S.

(e) Compute the Hausdorff dimension of the Cantor set.

Details in class I left for you to check. (Do it, but don’t turn it in.)

*

*

*

We saw in class ¢(I) = I for closed cells. Show it for arbitrary cells.

Show that m*(a + E) = m*(E) for all a € RY, E C R4,

Show that the arbitrary intersection of o-algebras on X is also a o-algebra.
Verify that the counting measures and delta measures are measures.

When proving Caratheodory, we proved in class ¥ is a o-algebra, and that p*|s
is finitely additive. Show that p*|x is countably additive.

Assignment 2: Assigned Wed 09/12. Due Wed 09/19

1.

4.

5.

Let (X, %, ) be a measure space. For A € P(X) define p*(A) = inf{u(E) | E D
A& E € ¥}, and p.(A) =sup{u(E) | EC A& E € ©}.

(a) Show that p* is an outer measure.
(b) Let Ay, As,--- € P(X) be disjoint. Show that p. (U7~ Ai) = D7 pe(A4;).

[The set function p« is called an inner measure.]
(c) Show that for all A C X, u*(A) 4+ p.(A%) = u(X).
(d) Let A C P(X) with u*(A) < co. Show that A € £, <= pu.(4) = p*(4).
Here’s an alternate (cleaner) approach to proving £ = By. We do it by proving
a stronger statement than necessary.

(a) If A € L(R?) show that for any & > 0 there exists two sets C, U such that
C CACU,C isclosed, U is open and A(U — C) < e.

(b) For A € L(R?), show that that there exists an F,, F and a G5, G such
that ' C A C G and A(G — F) = 0. Conclude By = L.

. Let A € L(R?). Prove every subset of A is Lebesgue measurable <= \(A) = 0.

(a) Prove B(R™*t") =c({Ax B| A€ B(R™)& B € B(R™)}).

(b) Prove L(R™™") D o({Ax B| A€ LR™)& B € L(R™)}).

(c) Show L(R?) 2 B(R?).
Find E € B(R) so that for all ¢ < b, we have 0 < A\(E N (a,b)) < b—a.

We say A C P(X) is an algebra if ) € A, and A is closed under complements
and finite unions. We say po : A — [0,00] is a (positive) pre-measure on A if
to(@) = 0, and for any countable disjoint sequence of sets sequence A; € A such that

U

A; € A, we have po(U7” Ai) = 307 po(4i).

Namely, a pre-measure is a finitely additive measure on an algebra A, which is also
countably additive for disjoint unions that belong to the algebra.

6.

(Caratheodory extension) If A is an algebra, and pg is a pre-measure on A, show
that there exists a measure p defined on o(A) that extends .

Optional problems, and details in class I left for you to check.

*

*

Prove any open subset of R? is a countable union of cells. Conclude £ 2 B.

Show that the cardinality B(R) is the same as that of R, however, the cardinality
of L(R) is the same as that of P(R). Conclude B(R) C L(R). [There are of course
other ways to prove this.]

If A; € X are such that A; O A;y1, show that ,u(ﬂfil A;) = lim; o p(4;),
provided p(A;) < co. Given an example to show this is not true if p(A;) = oc.
We saw in class A(A) = sup{A(K) | K C A& K is compact} for all bounded
sets A € L. Prove it for arbitrary A € L.

Show that there exists A C R such that if B C A and B € £ then A\(B) = 0,
and further, if B C A° and B € L then A\(B) = 0.



Assignment 3: Assigned Wed 09/19. Due Wed 09/26

1.

. Let ¥ D B(R%), and p be a regular measure on (R%, X).

Let X be a topological space, and p be a regular Borel measure on X. Show
that X has a maximal open set of measure 0. Namely, show that there exists
U C X, such that U open set, u(U) = 0 and further for any open set V C X
with u(V) = 0, we must have V' C U. [The complement of U is defined to be the
support of the measure p, and denoted by supp(u).]

Suppose A € X is
o-finite (i.e. A =UA,, and p(A,) < o). Show that pu(A) = sup{u(K) | K C
Ais compact}. [This remains true if we replace R% with any Hausdorff space.]

. Let p,v be two measures on (X,X). Suppose C C ¥ is a w-system such that

uw=rvonC.

(a) Suppose 3C; € C such that J°C; = X and u(C;) = v(C;) < co. Show
that pr = v on o(C).

(b) If we drop the finiteness condition p(C;) < oo is the previous subpart still
true? Prove or find a counter example.

Let k € (0,1). Does there exist E € L(R) such that for all a < b € R, we have

k(b —a) < AIN(a,b)) < (1 —k)(b—a)? Prove or find a counter example.

[’m aware that this looks suspiciously like a homework problem you already did. Also, this

problem has a short, elegant solution using only what we’ve seen in class so far.]

. For i € {1,2}, let (X;,%;, ;) be two measure spaces with p;(X;) < oco. Define

YR Yy = O’{Al x Ag | A; e 21}

(a) Let 21 € X7 and A € 1 ® Xo. Let S;, (A) = {z2 € Xa | (x1,22) € A},
and Ty, (A) = {z1 € X1 | (z1,22) € A}. Show that S,, (4) € ¥y and
Tx2 (A) € 3.

(b) If A € P(X; x X3) is such that for all z; € X;, S, (A) € X5 and S,,(A) €
Y1. Must A € X1 ® 357

(c) Show that there exists a measure v on (X; X X3, %1 ® X2) such that for all
A; € ¥; we have V(Al X A2) = /,Ll(Al)ug(Ag)

. (An alternate approach to A-systems.) Let M C P(X). We say M is a Mono-

tone Class, if whenever A;, B; € M with A; C A;;; and B; 2 B;y; then
U4 € Mand B, € M. If A C P(X) is an algebra, then show that
the smallest monotone class containing A is exactly o(A). [You should also address

existence of a smallest monotone class containing A.]

Optional problems, and details in class I left for you to check.

* Let X be a second countable locally compact Hausdorff space, and p be a Borel

*

measure on X that is finite on compact sets. Show that u is regular.

Is any o-finite Borel measure on R regular?

x Show that any A-system that is also a m-system is a o-algebra.

*

If T is a m-system, then A(II) = o(II). (We only proved A(II) C o(II).)

Assignment 4: Assigned Wed 09/26. Due Wed 10/03

1.

Let f: X — R be measurable, and g : R — R be Lebesgue measurable. True or
false: go f: X — R is measurable? Prove or find a counter example.

Let (X, X) be a measure space, and f, g : X — [—00, 00| be measurable. Suppose

whenever ¢ = 0, f # 0, and whenever f = 00, g € (—00,00). Show that

5 X — [—OO, OO] is measurable. [ Note that by the given data you will never get a
too 1

‘meaningless’ quotient of the form % or ===. The remainder of the quotients (e.g. ;) can be

defined in the natural manner.]

Let f, : X — R be a sequence of measurable functions such that (f,) — f
almost everywhere (a.e.). Let g : R — R be a Borel function.

(a) If for a.e. x € X, g is continuous at f(x), then show (go f,) = go f a.e.

(b) Is the previous part true without the continuity assumption on g?

. Let C C R? be convex. Must C' be Lebesgue measurable? Must C' be Borel

measurable? Prove or find counter examples. [The cases d = 1 and d > 1 are different.]

Let (X,%, 1) be a measure space, and (X,X,, i) it’s completion. Show that
g: X — [—00,00] is ¥,-measurable if and only if there exists two X-measurable
functions f,h : X — [—00,00] such that f = h p-almost everywhere, and
f < g < h everywhere.

. Let X be a metric space, ¥ D B(X) a o-algebra on X, and p a regular finite

measure on (X,¥). Let f: X — R be measurable.

(a) For any € > 0 and ¢ € N, show that there exists finitely many disjoint
compact sets {K; ; | [j] < N;} such that

N; i
M(X— U Ki,j) < ;, and  f(K;;) C [%,]; )
J=—Ni
(b) (Lusin’s Theorem) For any € > 0 show that there exists K. C X compact
such that f : K. — R is continuous, and u(X — K.) < €. [HINT: Let
Ke = M2, Ujjj<n, Kij- Define g; : Ko — R by g;(z) =j/2" if z € K; ; and |j| < N;.
Show g; : K — R is continuous and (g;) — f uniformly on K..]

A standard extension theorem now shows that for any f : X — R measurable
and € > 0, there exists g. : X — R continuous such that p{f # g} < e.

Optional problems, and details in class I left for you to check.

* Show that f : X — [—00,00] is measurable if and only if any of the following

conditions hold
(a) {f<a}eXforallaeR.

(b) {f >a} e forallaeR.

(¢) {f<a}eXforalacR.
(d) {f >a} eXforallacR

* Let f:]0,1] — [0,1] be the Cantor function, and g(x) = inf{f = «}. Show that

f is continuous, and the range of g is the Cantor set. Are f, g Hélder continuous?
If yes, what are the largest exponents «, § for which f, g are respectively Holder-
« and Hélder-8 continuous.



Assignment 5: Assigned Wed 10/03. Due Wed 10/10

1.

. Let f:R? —

(a) Suppose I C R?is a cell, and f: I — R is Riemann integrable. Show that
f is measurable, Lebesgue integrable and that the Lebesgue integral of f
equals the Riemann integral.

(b) Is the previous subpart true if we only assume that an improper (Riemann)
integral of f exists? Prove or find a counter example.

(a) Let (X,3, u) be a complete measure space, f : X — [—00, 00| be measur-
able and suppose fX fduis defined. If g : X — [—o00, 00] is such that f =g
a.e., then show [y fdu = [y gdp.

All the convergence theorems we’ve seen so far hold if we replace pointwise

convergence with a.e. convergence. I ask you to prove one below; you should

verify the others on your own.

(b) Suppose (f,) is a sequence of measurable functions, f,, > 0 a.e., and (f,) —

f a.e. on E. Show that liminf [, f, du > [, fdp.

[—00,00] be an integrable function such that [, fdA = 0 for all
cells I. Must f =0 a.e.? Prove or find a counter example.

. Let f:]0,00) > R be a measurable function. We define the Laplace Transform

of f to be the function F(s) = [~ exp(—st) f(t) dt wherever defined.
) I [771F ()] dt < oo, showthatF.[ )
(b) If [7°t]f(t)| dt < oo, show that F : [0,00) — R is differentiable.
(¢) If f is continuous and bounded, compute limg_, o, SF ().
(a) Let T : R? — R? be linear, and A € £. Show that A\(T(A)) = |det(T)|A\(A).
[HINT: Check it separately for det(T') = 0. For det(T) # 0, write T as a product of

elementary transformations, and check the result for cells. (This should have been on
HW1, but I ‘inadvertently’ added the assumption that 7' was orthogonal.)]

(b) (Linear change of variable) Let f : RY — R be integrable, T': R* — R? an
invertible linear transformation, and £ € £(R9). Show that

/ (foT)IdetT|dA=/ fdA.
T-1(E) E

o0) — R is continuous.

Optional problems, and details in class I left for you to check.

*

*

*

For simple functions, check that | 8 is well defined.

9= Jpf<lpo

For arbitrary integrable functions, check [, af du =« [, fdp.

If [ fdp < oo, then show f < oo a.e.

If [|f|du =0, then show that f =0 a.e.

Prove the following generalization of Fatou’s Lemma: If f,, > 0 are measurable,
then lim inf fE fndu > fE liminf f du.

Finish the proof of showing [ gdu = [y go fdus-1. Use this to give a quick
proof that [, f(x+y)de = [p. f(x)dz. (This trick also helps with C[@

For positive functions check f <

Assignment 6: Assigned Wed 10/10. Due Never

In view of your Midterm on 10/17, this homework is optional.

*

If u(F) =0, and f : E — [—00,00] is any measurable function, then show
directly from the definition that [, fdu = 0.

Let p be the counting measure on N, and f: N — R a function.

(a) If 327°|f(n)] < oo, then show that Y- >° | f(n) = [y fdpu.

(b) If the series Y ° , f(n) is conditionally convelrgent7 show that [ fdu is
not defined.

Let (X,3, 1) be a measure space and f : X — Y some function. Define 7 =

{ACY | f(f71(A)) = A,&f 1 (A) € £}. For A € 7, define us(A) = p(f(A)).

Show that (Y, 7, us) is a measure space. If g : ¥ — [—00, 0] is integrable, can

you write fY gdpy in terms of an integral over X with respect to u?

Let g > 0 be measurable, and define v(A

and [, fdv= [, fgdp.

Let f ~ g if u{f # g} =0. For p € [1,00), define

)= fA g dp. Show that v is a measure,

LP = {f: X — R measurable, such that / |fIPdp < oo} and LP =LP)~.
X

For f € LP, pick any f' € f, and define ||f]|, = ([ |f'|" du)'/?. Show that this
is well defined and satisfies all the axioms of a Banach space except completeness
and the triangle inequality. [Completeness and the triangle inequality are of course true

but are harder to prove. I will prove them in class.]

Show that f <
For p € [0,1) show that you need not have || f + ng

esssupy f almost everywhere.

< |1, + llgll,-

Prove Holder’s inequality if p =1 or p = co.

Prove || f[|, = Sup|g||_ =1 fx fgdu.

If X is o-finite, then show || f||,, = supy4, =1 [ fgdpu.

(Young’s inequality) Let x,y € R, p,q € (1,00) with l + 1 = 1. Show that
joy| < B 4 L ol

Use Young’s inequality to give an alternate proof of Holder’s inequality.

and equality holds if and only if |x\p

Suppose ¢ is a strictly convex function and u(X) = 1. For what functions
can you have equality in Jensen’s inequality. Namely, when is ¢( [  fdu) =

f xPo fdu?
For what functions f, g can you have equality in Holder’s inequality?



Assignment 7: Assigned Wed 10/17. Due Wed 10/24

1. (a) If u(X) < o00,1<p<gq,show LX) C LP(X) and the inclusion map from
LY(X) — LP(X) is continuous. Find an example where L?(X) C LP(X).

1

[HiNT: Show ||f]l, < w(X)? 7| f],]
(b) Let ¢ = LP(N) with respect to the counting measure. If 1 < p < g show
that ¢ C ¢9. TIs the inclusion map ¢? — ¢9 continuous? Prove your answer.
2. (a) Suppose p,q,r € [1,00] with p < ¢ < r. Prove that for all f € LP N L",
f € L4. Further, find 6 € (0,1) such that || ]|, < [ /0] /1.
(b) If for some p € [1,00), f € LP(X)NL>(X) show that limg | fll, = [ f| -
[This sort of justifies the notation ||| ]
(c) Let pg € (0,00], u(X) = 1 and f € LPo(X).
exp(fX In|f] du).
3. For any p € [1, 0], show that simple functions are dense in LP(X). That is, for

any € > 0, f € LP(X) show that there exists a simple function s € LP(X) such
that || f —s||, <e.

Prove limp_>0+||f||p =

4. Let X be a metric space and y be a regular Borel measure on (X, B(X)). Assume
further and X = J{° U,,, where U, is open, U,, is compact, and U, C U, 1.

(a) For any p € [1,00), show that continuous compactly supported functions

are dense in LP (X) [You may assume the Tizete extension theorem from topology,

which guarantees (in a more general situation) that if C' C X is closed and f: C — R is

continuous, then there exists a continuous function F' : X — R such that ' = f on C']
(b) Is the previous part true for p = c0? Prove or find a counter example.

5. (a) Suppose p € [1,00), and f € LP(R%, \). For y € R%, let 7,f : R — R be
defined by 7, f(z) = f(xz — y). Show that (7, f) — f in L? as |y| — 0.

(b) What happnes for p = co?

Optional problems, and details in class I left for you to check.
. N 7
+ If pi,q € [1,00] with 35;" - = 7, show that [T} fill, < TIIfi

q pi’

x* Let 0 < p < g < oco. Then LP € L7 iff X contains sets of arbitarily small,
positive, measure. Also, L? ¢ LP iff X contains sets of arbitarily large (but
finite) measure.

x (Vitali’s convergence theorem.) Let f,, f € L'. Show that (f,,) — fin L! if and
only if (1) (fn) — f in measure, (2) {f,} is uniformly integrable, and (3) For
all € > 0 there exists F' € ¥ with pu(F) < oo such that [,..|fn] < €. [I proved the

forward direction in class, and sketched the reverse. Fill in the details of the reverse.]

Assignment 8: Assigned Wed 10/24. Due Wed 10/31

1. Suppose ¥ = ¢(C), where C C P(X) is countable. If i is a o-finite measure and
1 < p < oo, show that LP(X) is seperable (i.e. has a countable dense subset).
2. Let e, (z) = 2™ X = [0, 1]. For what p € [1, 00] does {e, } have a convergent
subsequence in LP(X,\)? Prove it.
3. (a) Suppose limy_, sup,, f\fn|>/\|f"| dp = 0. Show that there exists an increas-
ing funciton ¢ with p(X) /X — oo as A — oo, such that sup,, [ ¢(|fn|) < co.
(b) Suppose {f,} is uniformly integrable, and sup, [|fn| < co. Show that
limy—, o sUP,, f|fn‘>)\|fn\ =0.
(c) Show that the previous part fails without the assumption sup,, [|f,| < cc.
4. Recall we defined the variation of p by |u| = p* + =, and the total variation
by |lg]l = |p|(X). (You should check that these are well defined.)
(a) If p, v are two signed measurs on X, show that |u+v[(A) < |u|(A)+|v|(A).
(b) Let M be the space of all finite signed measures on (X, ). Show that M
with total variation norm (i.e. with [|u|| = |u|[(X)) is a Banach space.
(c) Show that (pn,) — p if and only if (p4,(A4)) = p(A) uniformly in A, VA € X.

5. (a) For a signed measure, we define [ fdu = [ fdu® — [y fdp~. Suppose
(fn) = f, (gn) — g, and | fn| < gn almost everywhere with respect to |ul.

If lim [ gn d|p| = [y gd|p] < oo, show that lim [y f, du = [ fdp.
(b) Suppose f, f, € L', and (f,) — f almost everywhere. Show that lim [ f, —
Fldlu| = 05 and only if i f1 7o) dl = [1f1d]ul.

Optional problems, and details in class I left for you to check.

* Show L>°(R) is not separable.

% Say p is a signed measure, and A; € ¥ are pariwise disjoint. If |u(|J 4;)| < oo,
then must Y 1°|p(A;)| < 00? Prove, or find a counter example.

« If g € L*(X, ), let v(A) = [, g. Show that v is a signed measure on X, and
[ fdv=][fgdp.
% (a) Prove the Hanh decomposition is unique, up to sets of measure 0. [That is
show X = P; UNj and X = P> U Na, then P, = P; — AU B, where all subsets of A, B
have measure 0, and a similar statement for N.]

(b) Show that the measures p* and u~ we defined in class are independent of
the Hanh decomposition used to define them.

(¢c) We say u and v are mutually singular if X = AU B where A, B € ¥ with
AN B ={, and for all measurable A’ C A, B’ C B we have u(4’) = 0 and
v(B’) = 0. Show that the Jordan decomposition is unique if the measures
are assumed to be mutually singular.

* If 4 = p1 — po where pup and po are positive, show that u; > p* and s > p™.



Assignment 9: Assigned Wed 10/31. Due Wed 11/07

1. (a) Let v be a finite (positive) measure. Prove v < u <= Ve > 0,30 > 0 >
,LL(A) <§ = Z/(A) < €. [This sort of justifies the name “absolutely continuous”.]

(b) Is the previous part true if v is not finite? Prove or find a counter example.

2. (a) Let v; and vy be two finite signed measures on X. Show that there exists
a finite signed measure v; V v such that vy V va(A) > 11(A) V 2(A), and
for any other finite signed measure v such that v(A) > v1(A) V v2(A4) we
ust have 11 Vs <.

(b) If 1,9 above are absolutely continuous with respect to a positive o-finite

d
measure p, prove vy Vg <K [ and express (1'27:"2)

3. Let (9, F, P) be a measure space with P(Q2) = 1, and X € L*(Q, F, P). [The
probabilistic interpretation is that £ is the sample space, A € F is an event, X is a random
variable, and P(X € B) is the chance that X € B, where B € B(R).]

in terms of ¥4 and 22,
du du

(a) Suppose G C F is a o-sub-algebra of F. Show that there exists a unique
G-measurable function Y such that fA YdP = fA XdPforall AcG. [vis
called the conditional expection of X given G, and denoted by E(X | G).]

(b) (Tower property) If H C G is a o-sub-algebra, show that E(X |H) =
E(E(X |G)|H) almost everywhere.

(¢) (Conditional Jensen) If ¢ : R — R is convex, show that ¢(E(X |G)) <
E(¢(X)|G) almost everywhere.

(d) Suppose X € L?(Q, F,P). Show that E(X|G) is the L?-orthogonal pro-
jection of X onto the subspace L?(2,G). [Namely show E(X |G) € L%(Q,6), and
Jo(X —B(X|G)YdP =0 for all Y € L*(2,G)]

4. Let p be a positive measure and v a finite signed measure. Let v = v, + 15 be
the Lebesgue decomposition of v. Show that ||v|| = ||vac|| + ||vs-

5. Let p be o-finite, and define ¢ : L™ — (L')* by ¢4(f) = [ fgdu. Show that
© is a bijective linear isometry. [In this sense we say L> is the dual of L. The reverse
identification is not true in general: L! can be identified with an subspace of (L°°)*, but need

not be all of it. The proof of this requires the Hanh-Banach theorem.]

Optional problems, and details in class I left for you to check.

* Show that the Radon Nicodym theorem is not true if v is o-finite, but p is not.
Where does the proof we had in class break down if y is not o-finite?

* Finish the proof of the Lebesgue decomposition (existence and uniqueness) when
v is o-finite.

x If X,Y are Banach spaces show that B(X,Y) with operator norm is a Banach
space.

x Let p € (1,00], 1/p+1/qg =1, and ¢ < oo. If g is a measurable function such
that sup{ [ sg | s is simple, and [[sll, <1} < ¢, show that g € L9 and ||g||, < c.

s If p is a finite signed measure, show that | [ fdu| < [|f|d|p|.

Assignment 10: Assigned Wed 11/07. Due Wed 11/14

1. (a) Sug)opose ;20:1(220:1 |@mn]) < oo. Show that >
Zn:l(ZmZI ama")'
(b) Give a counter example to (a) if we only assume ) > ap n < co. Find
a counter example where both iterated sums are finite.
2. (a) If X and Y are not o-finite, show that Fubini’s theorem need not hold.

(b) If [y y fd(u x v) is not assumed to exist (in the extended sense), show
that both iterated integrals can exist, be finite, but need not be equal.

::1(220:1 Umn) =

3. (Fubini for completions.) Suppose (X, 3, u) and (Y, 7,v) are two o-finite, com-
plete measure spaces. Let m = (X ® 7),,x,, denote the completion of ¥ ® 7 with
respect to p X v.

(a) Show that ¥ ® 7 need not be p X v-complete (i.e. 7 2 ¥ ® 7 in general).

(b) Suppose f: X xY — [—00, o0] is F-measurable. Define as usual the slices
Pra Y — [0,00] by ¢ra(y) = f(x,y), and similarly ¢y, () = f(z,y).
Show that for p-almost all x € X, ¢f, is an 7-measurable, and for v-
almost all y, 1, is an ¥-measurable.

(¢) Suppose f is integrable on X x Y in the extended sense. Define F(x) =
[y f(@,y)dv(y) and G(y) = [y f(z,y)du(z). Show F is defined p-a.e.
and Y-measurable. Slmllarly show G is defined v-a.e., and T-measurable.
Further, show and that [ Fdu= [, Gdv = [, fd(p xv).

4. Let (X,%, p), (Y,7,v) be two o- ﬁnite measure spaces, p € [1,00], and f: X x
Y — R is ¥ ® 7 measurable. Let F(x) = [, f(x,y)dv(y), and ¢,  be the slice
of f defined by ¢y s(x) = f(z,y). ShOW that ||F||LP(X) < fway,fHLp(X) dv(y).
[You should verify that when Y = {1,2} with the counting measure, the above is exactly
Minkowski’s triangle inequality.]

5. For p € [1,00) define ||f||;p = sup{Au{|f| > A}/? | A > 0}}, and the weak
LP space (denoted by LP*°) by LP> = {f | || f|| Ls.c < 00}. [As usual, we use the

convention that functions that are equal almost everywhere are identified with each other.]
(a) If f € LP, show f € LP> and [|f]| s < IIf]l,
(b) If f,g € LP>°, show that f + g € L”*>°. Show further that || f + g/ ;p.cc <

c(|| fll oo + 1191l 1.p.00 ) for some constant ¢ independent of f, g. [Thus ||| ;p,c

is called a quasi-norm, and LP>* is called a quasi-Banach space.]

(¢) If pis o-finite, L < p < ¢ <r <ooand f € LP>° N L™ then show f € L.

. Is the converse true?

Optional problems, and details in class I left for you to check.

* Show that the Lebesgue measure on R™T" is the product of the Lebesgue
measurs on R™ and R" respectively. [Note, you've previously seen that L(R™1") D
L(R™) ® L(R™); however BR™ ") = B(R™) ® B(R™).]

* For E € ¥ ® 7, define fr(z) = v(S,(E)) and gr(y) = w(Ty(E)).
f:X —>Rand g:Y — R are measurable.

A ={E | fg,gE are measurable}. Show that A is a A-system, and A contains all rectangles.]

Show that

[HINT: First assume p, v are finite. Let

* Verify that u x v def Jx v(8:(E)) du(x) is a measure.



Assignment 11: Assigned Wed 11/14. Due Wed 11/21

1. If zl) + % =1, f € LP, g € L7 show that f *x g is bounded and continuous. If
p,q < 0o, show further f * g(z) — 0 as |z| — oco.

2. Define S(RY) = {f € C®(RY) | Vm,, sup,(1 + |z|™)|D*f(z)| < oo}. Here
m € NU {0}, and a = (a1,...,aq) € (NU{0})? is a multi-index, and D*f =
ot --- 09" f. The space S is called the Schwartz Space.

(a) If p € [1,00), f € LP(RY), g € S(R?), show that f x g € C*®(R%), and
further D*(f * g) = f * (D“g).
(b) Show that S is dense subset of LP for p € [1,00).
(¢) Show that C° is a dense subset of L? for p € [1,00).
3. (a) It f,g € L2.,((0,1]), show that (f * g)"(n) = f(n)g(n). [Here L2 (0, 1))
denotes (equivalence classes of) all Lebesgue measurable functions f : R — C which
have period 1 (i.e. 71f = f), and fol\f|2 d\ < 00.]

(b) 1f f.9 € L2([0,1]), show that (fg)" (n) = f *4(n) € 3,z f(m)g(n —m).
4. Though I encourage you to check the properties on the Dirichlet and Fejér kernels

stated in the optional problems, you may assume them here without proof.

(a) If f € Cper[0,1], show that (onf) — f uniformly. [Here Cpec[0,1] = {f €

C(R) | 71 f = f} denotes all continuous functions with period 1.]

If f € Cher[0,1], it turns out that the partial sums Sy f need not converge to

f even pointwise. (In fact, there exist many f € Cper([0,1]) such that Sy f

is divergent on a dense Gy in [0,1].) If, however, f is a little bit better than

continuous, then the Fourier series of f converges to f pointwise.
(b) Let f € Cper([0,1]) and o« > 0. If sup, , W < 00, then show that
(Snf) — f pointwise, as N — 0o. [In fact, (Sy f) — f uniformly.]

5. Let p be a finite signed Borel measure on [0,1]. If Vn € Z fi(n) = 0, show p = 0.

Optional problems, and details in class I left for you to check.
x If feLP, ge LY withp,q€[l,00] and 1/p+1/q > 1, show that f*xg=g=x* f.

« If felLP ge L% he L" with p,q,r € [1,00] and 1/p+ 1/q+ 1/r > 2, show
that (fxg)«h = fx*(gxh).

* Define the Derichlet kernel by Dy (z) = ZNN exp(2min).
(a) Show that Syf(xz) = Dy * f(x) = def f( )DN(a: — y) dy [Recall, Sy f =

Z]_VN f(n)en, where e, (z) = €2™i"®  and f(n) (f,en) fo y) dy.]
(b) Show that Dy (x) = w Further show limy o0 fa “|Dy| =
* Define Fejér kernel by Fiy = N év 'D,.
(a) Show that oy f %' LS NG, f— Py f.

sin?(Nwz)
N sin?(mx)”’

(b) Show that Fn(z) = and that {Fx} is an approximate identity.

Assignment 12: Assigned Wed 11/21. Due Wed 11/28

1. (a) Let n € N be even, £ + L =1 If f € 07 (Z), show that f € L. ([0,1])
and ”f”L" < ||f“||€n/. [HINT: Let n = 2m. Then ||f|[7n = [I(F™)" [|%.]

(b) Let s > 5 —2>0,and L +1 =1.1f f € Hj,, show f € (9(Z). Further

show that the map f — f is contlnuous from HS_ . — ¢9.

per
(c) If n € Nis even, s > § — £ then show that H3., C L"([0,1]) and that the

inclusion map is contmuous [This is one part of the Sobolev embedding theorem.]

2. Let f € L%([0,1]). Show that there exists u € C°°([0,1] x (0,00)) such that
u(0,t) = u(1,t), limy o+ |lu(-, t) — f()|l, = 0, and dyu — %u = 0. [HINT: You may

assume the result of the optional problems.]

3. Finish the change of variable proof using the following approach. Recall U,V C
R? are open connected sets, and ¢ : U — V is a C! bijection whose inverse is
also C'. Our aim is to show A(¢(A4)) = [,|det V| dX for all A C U Borel.

Assume first that ¢, =1 are both uniformly C*, and U,V are bounded. In this
case we showed in class that A(¢(A)) < [,|det V| dA for all Borel A C U.

(a) If f: V — [0,00] is Borel, show that [, f < [;; f o @ |det V| dA.
(b) Show that )\(A) = fA\det V§D| dA. [HiNT: This follows very quickly previous part.]

(c) Prove the previous subpart without the additional assumptions that o, o ~*
are uniformly C', and U,V are bounded.

Optional problems, and details in class T left for you to check.
+ (a) If f e LL,.([0,1]), show that 2|f(n)| < [)|f(y — 5| dy.

(b) Use the previous subpart to give an alternate (perhaps more illuminating)
proof of the Riemann Lebesgue lemma.

(c) It (0,1), f € Cpe. ([0,
(d) Show by example that the converse of the previous part is false.
0 show that H>

per

per

1]), show that sup,, |n|*|f(n)| < cc.

*x For any s > is a closed subspace of L2.

* Let 0 < r < s. Show that any bounded sequence in H,
is convergent subsequence in Hp,,
C C™210,1] and

* Let n € NU{0}, @ € [0,1) s > 1/2 4+ n + a. Show that Hj, C CJ?
the inclusion map is continuous. [Recall Cpzr [0, 1] is the set of all C™ periodic functions

per 1as a subsequence that

on R (i.e. 71 f = f) whose nt? derivative is Holder continuous with exponent a.]
x If |[Vp—I|| o <&, and ¢(0) = 0, then show that ¢((—1,1)?) C (—1—de, 1+de)?.
(Polar Coordinates.) Let f € L*(R?). Show that

*

f(x,y)dxdy:/ f(rcos@,rsind)rdrdf
RZ

[0,00) x [0,27)



Assignment 13: Assigned Wed 11/28. Due Wed 12/05

1.

. Let 41 be a finite signed Borel measure on R?. Define Dyu(z) = lim,_,o+

(a) If f € L*(R9) and f is not identically O (a.e.), then show that M f ¢ L'(R?).
The next few subparts outline a proof that for any p > 1, the maximal function
is an LP bounded sublinear operator. Let p € (1,00), f € LP(R%) and f > 0.

d
(b) Show that M{Mf > o} < (1375)&]{]55&} f, for any t > 0, 6 € (0,1) and
f = 0 measurable.
(¢) Let p € (1,00], and d € N. Show that there exists a constant ¢ = ¢(p, d)

such that [[Mf]|, < c[|f], for all f € LP(RY). [HiNT: For p < oo, use the
previous part, the identity HMf||§ = fooo paP " INMf > a} da and optimise in 4.]

w(B(z,r))
A(B(z,r)) "

(a) If w L X, show that Dy = 0 almost everywhere with respect to A. [HinT:
Write u = p1 + p2 where supp(u1) is compact with Lebesgue measure 0, and [|u2]| < €.]

(b) If u L A, show that D|u| = oo almost everywhere with respect to pu!

(¢) Show that Du = % almost everywhere with respect to A. [Here p = ps+ pac

is the Lebesgue decomposition of p with respect to A.]

. Suppose f : R — R is a monotone function. Show that f is differentiable

almost everywhere. [HINT: Suppose first f is monotone, injective and bounded. Show that
1w(A) = A(f(A)) defines a finite Borel measure. How does this help?]

. If f,g:]0,1] = R are absolutely continuous, then show that fg is absolutely

continuous. Conclude [fg]§ = fol flg+ fol fq'.

. Show that f : R — R is Lipshitz if and only if f is absolutely continuous and

'€ L>*(R).

Optional problems, and details in class I left for you to check.

*

Show that the arbitary union of closed (non-degenerate) cells is Lebesgue mea-
surable.

Find an example of £ € £(R?) and z € R? such that lim,_, % does
not exist.

Suppose f : R — R is measurable. Let o, 8 > 0 with a/8 ¢ Q. If f has period
a, and also has period 8 (i.e. for all x € R, f(z) = f(z + a) = f(z + 8)),

then show that f is constant almost everywhere. (But f need not be constant
everywhere!)

We say the family {E,.} shrinks nicely to x € R? if there exists § > 0 such that
for all v, E, C B(z,r) and AN(E,) > 0A(B(z,r)). If {E,} shrinks nicely to z,
show that lim ﬁ fET f = f(z) for all Lebesgue points of f.

If f € L*(RY), show that M f(z) > |f(x)| at all Lebesgue points of f.

If f: [a,b] — R is absolutely continuous, then show that f is of bounded
variation, and that the variation is absolutely continuous. Conclude f can be
written as the difference of two monotone absolutely continuous functions.



