
Math 720: Homework.

Do, but don’t turn in optional problems. There is a firm ‘no late homework’ policy.

Assignment 1: Assigned Wed 09/05. Due Wed 09/12

Following the notation of Cohn, I use λ to denote the Lebesgue measure.

1. For each of the following sets, compute the Lebesgue outer measure.
(a) Any countable set. (b) The Cantor set. (c) {x ∈ [0, 1] | x 6∈ Q}.

2. (a) If V ⊆ Rd is a subspace with dim(V ) < d, then show that λ(V ) = 0.

(b) If P ⊆ R2 is a polygon show that area(P ) = λ(P ).

3. (a) Say µ is a translation invariant measure on (Rd,L) (i.e. µ(x+ A) = µ(A)
for all A ∈ L, x ∈ Rd) which is finite on bounded sets. Show that ∃c > 0
such that µ(A) = cλ(A).

(b) Let T : Rd → Rd be an orthogonal linear transformation, and A ∈ L. Show
that T (A) ∈ L and λ(T (A)) = λ(A). [Hint: Express T in terms of elementary

transformations.]

4. (a) Let E ⊆ P(X), and ρ : E → [0,∞] be such that ∅ ∈ E , X ∈ E and ρ(∅) = 0.
For any A ⊆ X define

µ∗(A) = inf
{ ∞∑

1

ρ(Ei)
∣∣∣Ei ∈ E , and A ⊆

∞⋃
1

Ej

}
.

Show that µ∗ is an outer measure.

(b) Let (X, d) be any metric space, δ > 0 and define Eδ = {B(x, r) | x ∈ X, r ∈
(0, δ)}. Given α > 0 define ρ(B(x, r)) = cαr

α, where cα = πα/2/Γ(1 +α/2)
is a normalization constant. Let H∗α,δ be the outer measure obtained with
this choice of ρ and the collection of sets Eδ. Define H∗α = limδ→0H

∗
α,δ.

Show H∗α is an outer measure and restricts to a measure Hα on a σ-algebra
that contains all Borel sets. The measure Hα is called the Hausdorff mea-
sure of dimension α. [Don’t reprove Caratheodory.]

(c) If X = Rd, and α = d show that Hd is the Lebesgue measure.

(d) Let S ∈ B(X). Show that there exists (a unique) d ∈ [0,∞] such that
Hα(S) = ∞ for all α ∈ (0, d), and Hα(S) = 0 for all α ∈ (d,∞). This
number is called the Hausdorff dimension of the set S.

(e) Compute the Hausdorff dimension of the Cantor set.

Details in class I left for you to check. (Do it, but don’t turn it in.)

∗ We saw in class `(I) = I for closed cells. Show it for arbitrary cells.

∗ Show that m∗(a+ E) = m∗(E) for all a ∈ Rd, E ⊆ Rd.
∗ Show that the arbitrary intersection of σ-algebras on X is also a σ-algebra.

∗ Verify that the counting measures and delta measures are measures.

∗ When proving Caratheodory, we proved in class Σ is a σ-algebra, and that µ∗|Σ
is finitely additive. Show that µ∗|Σ is countably additive.

Assignment 2: Assigned Wed 09/12. Due Wed 09/19

1. Let (X,Σ, µ) be a measure space. For A ∈ P (X) define µ∗(A) = inf{µ(E) | E ⊇
A&E ∈ Σ}, and µ∗(A) = sup{µ(E) | E ⊆ A&E ∈ Σ}.
(a) Show that µ∗ is an outer measure.

(b) Let A1, A2, · · · ∈ P(X) be disjoint. Show that µ∗(
⋃∞

1 Ai) >
∑∞

1 µ∗(Ai).
[The set function µ∗ is called an inner measure.]

(c) Show that for all A ⊆ X, µ∗(A) + µ∗(A
c) = µ(X).

(d) Let A ⊆ P(X) with µ∗(A) <∞. Show that A ∈ Σµ ⇐⇒ µ∗(A) = µ∗(A).

2. Here’s an alternate (cleaner) approach to proving L = Bλ. We do it by proving
a stronger statement than necessary.

(a) If A ∈ L(Rd) show that for any ε > 0 there exists two sets C,U such that
C ⊆ A ⊆ U , C is closed, U is open and λ(U − C) < ε.

(b) For A ∈ L(Rd), show that that there exists an Fσ, F and a Gδ, G such
that F ⊆ A ⊆ G and λ(G− F ) = 0. Conclude Bλ = L.

3. Let A ∈ L(Rd). Prove every subset of A is Lebesgue measurable ⇐⇒ λ(A) = 0.

4. (a) Prove B(Rm+n) = σ({A×B | A ∈ B(Rm) &B ∈ B(Rn)}).
(b) Prove L(Rm+n) ) σ({A×B | A ∈ L(Rm) &B ∈ L(Rn)}).
(c) Show L(R2) ) B(R2).

5. Find E ∈ B(R) so that for all a < b, we have 0 < λ(E ∩ (a, b)) < b− a.

We say A ⊆ P(X) is an algebra if ∅ ∈ A, and A is closed under complements
and finite unions. We say µ0 : A → [0,∞] is a (positive) pre-measure on A if
µ0(∅) = 0, and for any countable disjoint sequence of sets sequence Ai ∈ A such that⋃∞

1 Ai ∈ A, we have µ0(
⋃∞

1 Ai) =
∑∞

1 µ0(Ai).

Namely, a pre-measure is a finitely additive measure on an algebra A, which is also
countably additive for disjoint unions that belong to the algebra.

6. (Caratheodory extension) If A is an algebra, and µ0 is a pre-measure on A, show
that there exists a measure µ defined on σ(A) that extends µ0.

Optional problems, and details in class I left for you to check.

∗ Prove any open subset of Rd is a countable union of cells. Conclude L ⊇ B.

∗ Show that the cardinality B(R) is the same as that of R, however, the cardinality
of L(R) is the same as that of P(R). Conclude B(R) ( L(R). [There are of course

other ways to prove this.]

∗ If Ai ∈ Σ are such that Ai ⊇ Ai+1, show that µ(
⋂∞
i=1Ai) = limi→∞ µ(Ai),

provided µ(A1) <∞. Given an example to show this is not true if µ(A1) =∞.

∗ We saw in class λ(A) = sup{λ(K) | K ⊆ A&K is compact} for all bounded
sets A ∈ L. Prove it for arbitrary A ∈ L.

∗ Show that there exists A ⊆ R such that if B ⊆ A and B ∈ L then λ(B) = 0,
and further, if B ⊆ Ac and B ∈ L then λ(B) = 0.
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Assignment 3: Assigned Wed 09/19. Due Wed 09/26

1. Let X be a topological space, and µ be a regular Borel measure on X. Show
that X has a maximal open set of measure 0. Namely, show that there exists
U ⊆ X, such that U open set, µ(U) = 0 and further for any open set V ⊆ X
with µ(V ) = 0, we must have V ⊆ U . [The complement of U is defined to be the

support of the measure µ, and denoted by supp(µ).]

2. Let Σ ⊇ B(Rd), and µ be a regular measure on (Rd,Σ). Suppose A ∈ Σ is
σ-finite (i.e. A = ∪∞1 An, and µ(An) <∞). Show that µ(A) = sup{µ(K) | K ⊆
A is compact}. [This remains true if we replace Rd with any Hausdorff space.]

3. Let µ, ν be two measures on (X,Σ). Suppose C ⊆ Σ is a π-system such that
µ = ν on C.
(a) Suppose ∃Ci ∈ C such that

⋃∞
1 Ci = X and µ(Ci) = ν(Ci) < ∞. Show

that µ = ν on σ(C).
(b) If we drop the finiteness condition µ(Ci) <∞ is the previous subpart still

true? Prove or find a counter example.

4. Let κ ∈ (0, 1). Does there exist E ∈ L(R) such that for all a < b ∈ R, we have
κ(b − a) 6 λ(I ∩ (a, b)) 6 (1 − κ)(b − a)? Prove or find a counter example.
[I’m aware that this looks suspiciously like a homework problem you already did. Also, this

problem has a short, elegant solution using only what we’ve seen in class so far.]

5. For i ∈ {1, 2}, let (Xi,Σi, µi) be two measure spaces with µi(Xi) < ∞. Define
Σ1 ⊗ Σ2 = σ{A1 ×A2 | Ai ∈ Σi}.
(a) Let x1 ∈ X1 and A ∈ Σ1 ⊗ Σ2. Let Sx1

(A) = {x2 ∈ X2 | (x1, x2) ∈ A},
and Tx2

(A) = {x1 ∈ X1 | (x1, x2) ∈ A}. Show that Sx1
(A) ∈ Σ2 and

Tx2(A) ∈ Σ1.

(b) If A ∈ P(X1 ×X2) is such that for all xi ∈ Xi, Sx1(A) ∈ Σ2 and Sx2(A) ∈
Σ1. Must A ∈ Σ1 ⊗ Σ2?

(c) Show that there exists a measure ν on (X1×X2,Σ1⊗Σ2) such that for all
Ai ∈ Σi we have ν(A1 ×A2) = µ1(A1)µ2(A2).

6. (An alternate approach to λ-systems.) Let M ⊆ P (X). We say M is a Mono-
tone Class, if whenever Ai, Bi ∈ M with Ai ⊆ Ai+1 and Bi ⊇ Bi+1 then⋃∞

1 Ai ∈ M and
⋂∞

1 Bi ∈ M. If A ⊆ P (X) is an algebra, then show that
the smallest monotone class containing A is exactly σ(A). [You should also address

existence of a smallest monotone class containing A.]

Optional problems, and details in class I left for you to check.

∗ Let X be a second countable locally compact Hausdorff space, and µ be a Borel
measure on X that is finite on compact sets. Show that µ is regular.

∗ Is any σ-finite Borel measure on Rd regular?

∗ Show that any λ-system that is also a π-system is a σ-algebra.

∗ If Π is a π-system, then λ(Π) = σ(Π). (We only proved λ(Π) ⊆ σ(Π).)

Assignment 4: Assigned Wed 09/26. Due Wed 10/03

1. Let f : X → R be measurable, and g : R→ R be Lebesgue measurable. True or
false: g ◦ f : X → R is measurable? Prove or find a counter example.

2. Let (X,Σ) be a measure space, and f, g : X → [−∞,∞] be measurable. Suppose
whenever g = 0, f 6= 0, and whenever f = ±∞, g ∈ (−∞,∞). Show that
f
g : X → [−∞,∞] is measurable. [ Note that by the given data you will never get a

‘meaningless’ quotient of the form 0
0

or ±∞±∞ . The remainder of the quotients (e.g. 1
∞ ) can be

defined in the natural manner.]

3. Let fn : X → R be a sequence of measurable functions such that (fn) → f
almost everywhere (a.e.). Let g : R→ R be a Borel function.

(a) If for a.e. x ∈ X, g is continuous at f(x), then show (g ◦ fn)→ g ◦ f a.e.

(b) Is the previous part true without the continuity assumption on g?

4. Let C ⊆ Rd be convex. Must C be Lebesgue measurable? Must C be Borel
measurable? Prove or find counter examples. [The cases d = 1 and d > 1 are different.]

5. Let (X,Σ, µ) be a measure space, and (X,Σµ, µ̄) it’s completion. Show that
g : X → [−∞,∞] is Σµ-measurable if and only if there exists two Σ-measurable
functions f, h : X → [−∞,∞] such that f = h µ-almost everywhere, and
f 6 g 6 h everywhere.

6. Let X be a metric space, Σ ⊇ B(X) a σ-algebra on X, and µ a regular finite
measure on (X,Σ). Let f : X → R be measurable.

(a) For any ε > 0 and i ∈ N, show that there exists finitely many disjoint
compact sets {Ki,j | |j| 6 Ni} such that

µ
(
X −

Ni⋃
j=−Ni

Ki,j

)
<

ε

2i
, and f(Ki,j) ⊆

[ j
2i
,
j + 1

2i
)

(b) (Lusin’s Theorem) For any ε > 0 show that there exists Kε ⊆ X compact
such that f : Kε → R is continuous, and µ(X − Kε) < ε. [Hint: Let

Kε =
⋂∞
i=1

⋃
|j|6Ni Ki,j . Define gi : Kε → R by gi(x) = j/2i if x ∈ Ki,j and |j| 6 Ni.

Show gi : K → R is continuous and (gi)→ f uniformly on Kε.]

A standard extension theorem now shows that for any f : X → R measurable
and ε > 0, there exists gε : X → R continuous such that µ{f 6= gε} < ε.

Optional problems, and details in class I left for you to check.

∗ Show that f : X → [−∞,∞] is measurable if and only if any of the following
conditions hold
(a) {f < a} ∈ Σ for all a ∈ R.

(b) {f > a} ∈ Σ for all a ∈ R.

(c) {f 6 a} ∈ Σ for all a ∈ R.

(d) {f > a} ∈ Σ for all a ∈ R.

∗ Let f : [0, 1]→ [0, 1] be the Cantor function, and g(x) = inf{f = x}. Show that
f is continuous, and the range of g is the Cantor set. Are f, g Hölder continuous?
If yes, what are the largest exponents α, β for which f, g are respectively Hölder-
α and Hölder-β continuous.
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Assignment 5: Assigned Wed 10/03. Due Wed 10/10

1. (a) Suppose I ⊆ Rd is a cell, and f : I → R is Riemann integrable. Show that
f is measurable, Lebesgue integrable and that the Lebesgue integral of f
equals the Riemann integral.

(b) Is the previous subpart true if we only assume that an improper (Riemann)
integral of f exists? Prove or find a counter example.

2. (a) Let (X,Σ, µ) be a complete measure space, f : X → [−∞,∞] be measur-
able and suppose

∫
X
f dµ is defined. If g : X → [−∞,∞] is such that f = g

a.e., then show
∫
X
f dµ =

∫
X
g dµ.

All the convergence theorems we’ve seen so far hold if we replace pointwise
convergence with a.e. convergence. I ask you to prove one below; you should
verify the others on your own.

(b) Suppose (fn) is a sequence of measurable functions, fn > 0 a.e., and (fn)→
f a.e. on E. Show that lim inf

∫
E
fn dµ >

∫
E
f dµ.

3. Let f : Rd → [−∞,∞] be an integrable function such that
∫
I
f dλ = 0 for all

cells I. Must f = 0 a.e.? Prove or find a counter example.

4. Let f : [0,∞)→ R be a measurable function. We define the Laplace Transform
of f to be the function F (s) =

∫∞
0

exp(−st)f(t) dt wherever defined.

(a) If
∫∞

0
|f(t)| dt <∞, show that F : [0,∞)→ R is continuous.

(b) If
∫∞

0
t|f(t)| dt <∞, show that F : [0,∞)→ R is differentiable.

(c) If f is continuous and bounded, compute lims→∞ sF (s).

5. (a) Let T : Rd → Rd be linear, and A ∈ L. Show that λ(T (A)) = |det(T )|λ(A).
[Hint: Check it separately for det(T ) = 0. For det(T ) 6= 0, write T as a product of

elementary transformations, and check the result for cells. (This should have been on

HW1, but I ‘inadvertently’ added the assumption that T was orthogonal.)]

(b) (Linear change of variable) Let f : Rd → R be integrable, T : Rd → Rd an
invertible linear transformation, and E ∈ L(Rd). Show that∫

T−1(E)

(f ◦ T )|detT | dλ =

∫
E

f dλ.

Optional problems, and details in class I left for you to check.

∗ For simple functions, check that
∫
E
s is well defined.

∗ For positive functions check f 6 g =⇒
∫
E
f 6

∫
E
g.

∗ For arbitrary integrable functions, check
∫
E
αf dµ = α

∫
E
f dµ.

∗ If
∫
X
f dµ <∞, then show f <∞ a.e.

∗ If
∫
X
|f | dµ = 0, then show that f = 0 a.e.

∗ Prove the following generalization of Fatou’s Lemma: If fn > 0 are measurable,
then lim inf

∫
E
fn dµ >

∫
E

lim inf f dµ.

∗ Finish the proof of showing
∫
X
g dµ =

∫
Y
g ◦ f dµf−1 . Use this to give a quick

proof that
∫
Rd f(x+ y) dx =

∫
Rd f(x) dx. (This trick also helps with Q5(b).)

Assignment 6: Assigned Wed 10/10. Due Never

In view of your Midterm on 10/17, this homework is optional.

∗ If µ(E) = 0, and f : E → [−∞,∞] is any measurable function, then show
directly from the definition that

∫
E
f dµ = 0.

∗ Let µ be the counting measure on N, and f : N→ R a function.

(a) If
∑∞

1 |f(n)| <∞, then show that
∑∞
n=1 f(n) =

∫
N f dµ.

(b) If the series
∑∞
n=1 f(n) is conditionally convergent, show that

∫
N f dµ is

not defined.

∗ Let (X,Σ, µ) be a measure space and f : X → Y some function. Define τ =
{A ⊆ Y | f(f−1(A)) = A,&f−1(A) ∈ Σ}. For A ∈ τ , define µf (A) = µ(f(A)).
Show that (Y, τ, µf ) is a measure space. If g : Y → [−∞,∞] is integrable, can
you write

∫
Y
g dµf in terms of an integral over X with respect to µ?

∗ Let g > 0 be measurable, and define ν(A) =
∫
A
g dµ. Show that ν is a measure,

and
∫
E
f dν =

∫
E
fg dµ.

∗ Let f ∼ g if µ{f 6= g} = 0. For p ∈ [1,∞), define

Lp =
{
f : X → R measurable, such that

∫
X

|f |p dµ <∞
}

and Lp = Lp/ ∼ .

For f ∈ Lp, pick any f ′ ∈ f , and define ‖f‖p = (
∫
X
|f ′|p dµ)1/p. Show that this

is well defined and satisfies all the axioms of a Banach space except completeness
and the triangle inequality. [Completeness and the triangle inequality are of course true

but are harder to prove. I will prove them in class.]

∗ Show that f 6 ess supX f almost everywhere.

∗ For p ∈ [0, 1) show that you need not have ‖f + g‖p 6 ‖f‖p + ‖g‖p.
∗ Prove Hölder’s inequality if p = 1 or p =∞.

∗ (a) Prove ‖f‖1 = sup‖g‖∞=1

∫
X
fg dµ.

(b) If X is σ-finite, then show ‖f‖∞ = sup‖g‖1=1

∫
X
fg dµ.

∗ (a) (Young’s inequality) Let x, y ∈ R, p, q ∈ (1,∞) with 1
p + 1

q = 1. Show that

|xy| 6 |x|p
p + |y|q

q , and equality holds if and only if |x|p = |y|q.

(b) Use Young’s inequality to give an alternate proof of Hölder’s inequality.

∗ (a) Suppose ϕ is a strictly convex function and µ(X) = 1. For what functions
can you have equality in Jensen’s inequality. Namely, when is ϕ(

∫
X
f dµ) =∫

X
ϕ ◦ f dµ?

(b) For what functions f, g can you have equality in Hölder’s inequality?
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Assignment 7: Assigned Wed 10/17. Due Wed 10/24

1. (a) If µ(X) <∞, 1 6 p < q, show Lq(X) ⊆ Lp(X) and the inclusion map from
Lq(X) → Lp(X) is continuous. Find an example where Lq(X) ( Lp(X).

[Hint: Show ‖f‖p 6 µ(X)
1
p
− 1
q ‖f‖q .]

(b) Let `p = Lp(N) with respect to the counting measure. If 1 6 p < q show
that `p ( `q. Is the inclusion map `p ↪→ `q continuous? Prove your answer.

2. (a) Suppose p, q, r ∈ [1,∞] with p < q < r. Prove that for all f ∈ Lp ∩ Lr,
f ∈ Lq. Further, find θ ∈ (0, 1) such that ‖f‖q 6 ‖f‖

θ
p‖f‖

1−θ
r .

(b) If for some p ∈ [1,∞), f ∈ Lp(X)∩L∞(X) show that limq→∞‖f‖q = ‖f‖∞.
[This sort of justifies the notation ‖·‖∞.]

(c) Let p0 ∈ (0,∞], µ(X) = 1 and f ∈ Lp0(X). Prove limp→0+‖f‖p =

exp
(∫
X

ln|f | dµ
)
.

3. For any p ∈ [1,∞], show that simple functions are dense in Lp(X). That is, for
any ε > 0, f ∈ Lp(X) show that there exists a simple function s ∈ Lp(X) such
that ‖f − s‖p < ε.

4. Let X be a metric space and µ be a regular Borel measure on (X,B(X)). Assume
further and X =

⋃∞
1 Un, where Un is open, Un is compact, and Un ⊆ Un+1.

(a) For any p ∈ [1,∞), show that continuous compactly supported functions
are dense in Lp(X). [You may assume the Tizete extension theorem from topology,

which guarantees (in a more general situation) that if C ⊆ X is closed and f : C → R is

continuous, then there exists a continuous function F : X → R such that F = f on C.]

(b) Is the previous part true for p =∞? Prove or find a counter example.

5. (a) Suppose p ∈ [1,∞), and f ∈ Lp(Rd, λ). For y ∈ Rd, let τyf : Rd → R be
defined by τyf(x) = f(x− y). Show that (τyf)→ f in Lp as |y| → 0.

(b) What happnes for p =∞?

Optional problems, and details in class I left for you to check.

∗ If pi, q ∈ [1,∞] with
∑N

1
1
pi

= 1
q , show that ‖

∏n
1 fi‖q 6

∏
‖fi‖pi .

∗ Let 0 < p < q < ∞. Then Lp 6⊆ Lq iff X contains sets of arbitarily small,
positive, measure. Also, Lq 6⊆ Lp iff X contains sets of arbitarily large (but
finite) measure.

∗ (Vitali’s convergence theorem.) Let fn, f ∈ L1. Show that (fn)→ f in L1 if and
only if (1) (fn) → f in measure, (2) {fn} is uniformly integrable, and (3) For
all ε > 0 there exists F ∈ Σ with µ(F ) <∞ such that

∫
F c
|fn| < ε. [I proved the

forward direction in class, and sketched the reverse. Fill in the details of the reverse.]

Assignment 8: Assigned Wed 10/24. Due Wed 10/31

1. Suppose Σ = σ(C), where C ⊆ P(X) is countable. If µ is a σ-finite measure and
1 6 p <∞, show that Lp(X) is seperable (i.e. has a countable dense subset).

2. Let en(x) = e2πinx, X = [0, 1]. For what p ∈ [1,∞] does {en} have a convergent
subsequence in Lp(X,λ)? Prove it.

3. (a) Suppose limλ→∞ supn
∫
|fn|>λ|fn| dµ = 0. Show that there exists an increas-

ing funciton ϕ with ϕ(λ)/λ→∞ as λ→∞, such that supn
∫
X
ϕ(|fn|) <∞.

(b) Suppose {fn} is uniformly integrable, and supn
∫
|fn| < ∞. Show that

limλ→∞ supn
∫
|fn|>λ|fn| = 0.

(c) Show that the previous part fails without the assumption supn
∫
|fn| <∞.

4. Recall we defined the variation of µ by |µ| = µ+ + µ−, and the total variation
by ‖µ‖ = |µ|(X). (You should check that these are well defined.)

(a) If µ, ν are two signed measurs on X, show that |µ+ν|(A) 6 |µ|(A)+ |ν|(A).

(b) Let M be the space of all finite signed measures on (X,Σ). Show that M
with total variation norm (i.e. with ‖µ‖ = |µ|(X)) is a Banach space.

(c) Show that (µn)→ µ if and only if (µn(A))→ µ(A) uniformly in A, ∀A ∈ Σ.

5. (a) For a signed measure, we define
∫
X
f dµ =

∫
X
f dµ+ −

∫
X
f dµ−. Suppose

(fn) → f , (gn) → g, and |fn| 6 gn almost everywhere with respect to |µ|.
If lim

∫
X
gn d|µ| =

∫
X
g d|µ| <∞, show that lim

∫
X
fn dµ =

∫
X
f dµ.

(b) Suppose f, fn ∈ L1, and (fn)→ f almost everywhere. Show that lim
∫
|fn−

f |d|µ| = 0 if and only if lim
∫
|fn| d|µ| =

∫
|f |d|µ|.

Optional problems, and details in class I left for you to check.

∗ Show L∞(R) is not separable.

∗ Say µ is a signed measure, and Ai ∈ Σ are pariwise disjoint. If |µ(
⋃
Ai)| <∞,

then must
∑∞

1 |µ(Ai)| <∞? Prove, or find a counter example.

∗ If g ∈ L1(X,µ), let ν(A) =
∫
A
g. Show that ν is a signed measure on X, and∫

f dν =
∫
fg dµ.

∗ (a) Prove the Hanh decomposition is unique, up to sets of measure 0. [That is

show X = P1 ∪N1 and X = P2 ∪N2, then P2 = P1 − A ∪ B, where all subsets of A,B

have measure 0, and a similar statement for N .]

(b) Show that the measures µ+ and µ− we defined in class are independent of
the Hanh decomposition used to define them.

(c) We say µ and ν are mutually singular if X = A ∪ B where A,B ∈ Σ with
A ∩B = ∅, and for all measurable A′ ⊆ A, B′ ⊆ B we have µ(A′) = 0 and
ν(B′) = 0. Show that the Jordan decomposition is unique if the measures
are assumed to be mutually singular.

∗ If µ = µ1 − µ2 where µ1 and µ2 are positive, show that µ1 > µ+ and µ2 > µ−.
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Assignment 9: Assigned Wed 10/31. Due Wed 11/07

1. (a) Let ν be a finite (positive) measure. Prove ν � µ ⇐⇒ ∀ε > 0,∃δ > 0 �
µ(A) < δ =⇒ ν(A) < ε. [This sort of justifies the name “absolutely continuous”.]

(b) Is the previous part true if ν is not finite? Prove or find a counter example.

2. (a) Let ν1 and ν2 be two finite signed measures on X. Show that there exists
a finite signed measure ν1 ∨ ν2 such that ν1 ∨ ν2(A) > ν1(A) ∨ ν2(A), and
for any other finite signed measure ν such that ν(A) > ν1(A) ∨ ν2(A) we
ust have ν1 ∨ ν2 6 ν.

(b) If ν1, ν2 above are absolutely continuous with respect to a positive σ-finite

measure µ, prove ν1 ∨ ν2 � µ and express d(ν1∨ν2)
dµ in terms of dν1dµ and dν2

dµ .

3. Let (Ω,F , P ) be a measure space with P (Ω) = 1, and X ∈ L1(Ω,F , P ). [The

probabilistic interpretation is that Ω is the sample space, A ∈ F is an event, X is a random

variable, and P (X ∈ B) is the chance that X ∈ B, where B ∈ B(R).]

(a) Suppose G ⊆ F is a σ-sub-algebra of F . Show that there exists a unique
G-measurable function Y such that

∫
A
Y dP =

∫
A
X dP for all A ∈ G. [Y is

called the conditional expection of X given G, and denoted by E(X | G).]

(b) (Tower property) If H ⊆ G is a σ-sub-algebra, show that E(X |H) =
E
(
E(X | G) |H) almost everywhere.

(c) (Conditional Jensen) If ϕ : R → R is convex, show that ϕ(E(X | G)) 6
E(ϕ(X) |G) almost everywhere.

(d) Suppose X ∈ L2(Ω,F , P ). Show that E(X | G) is the L2-orthogonal pro-
jection of X onto the subspace L2(Ω,G). [Namely show E(X | G) ∈ L2(Ω,G), and∫
Ω(X − E(X |G))Y dP = 0 for all Y ∈ L2(Ω,G).]

4. Let µ be a positive measure and ν a finite signed measure. Let ν = νac + νs be
the Lebesgue decomposition of ν. Show that ‖ν‖ = ‖νac‖+ ‖νs‖.

5. Let µ be σ-finite, and define ϕ : L∞ → (L1)∗ by ϕg(f) =
∫
X
fg dµ. Show that

ϕ is a bijective linear isometry. [In this sense we say L∞ is the dual of L1. The reverse

identification is not true in general: L1 can be identified with an subspace of (L∞)∗, but need

not be all of it. The proof of this requires the Hanh-Banach theorem.]

Optional problems, and details in class I left for you to check.

∗ Show that the Radon Nicodym theorem is not true if ν is σ-finite, but µ is not.
Where does the proof we had in class break down if µ is not σ-finite?

∗ Finish the proof of the Lebesgue decomposition (existence and uniqueness) when
ν is σ-finite.

∗ If X,Y are Banach spaces show that B(X,Y ) with operator norm is a Banach
space.

∗ Let p ∈ (1,∞], 1/p + 1/q = 1, and c < ∞. If g is a measurable function such
that sup{

∫
X
sg | s is simple, and ‖s‖p 6 1} 6 c, show that g ∈ Lq and ‖g‖q 6 c.

∗ If µ is a finite signed measure, show that |
∫
f dµ| 6

∫
|f |d|µ|.

Assignment 10: Assigned Wed 11/07. Due Wed 11/14

1. (a) Suppose
∑∞
m=1(

∑∞
n=1 |am,n|) < ∞. Show that

∑∞
m=1(

∑∞
n=1 am,n) =∑∞

n=1(
∑∞
m=1 am,n).

(b) Give a counter example to (a) if we only assume
∑
m

∑
n am,n <∞. Find

a counter example where both iterated sums are finite.

2. (a) If X and Y are not σ-finite, show that Fubini’s theorem need not hold.

(b) If
∫
X×Y f d(µ × ν) is not assumed to exist (in the extended sense), show

that both iterated integrals can exist, be finite, but need not be equal.

3. (Fubini for completions.) Suppose (X,Σ, µ) and (Y, τ, ν) are two σ-finite, com-
plete measure spaces. Let π = (Σ⊗ τ)µ×ν denote the completion of Σ⊗ τ with
respect to µ× ν.

(a) Show that Σ⊗ τ need not be µ× ν-complete (i.e. π ) Σ⊗ τ in general).

(b) Suppose f : X × Y → [−∞,∞] is F-measurable. Define as usual the slices
ϕf,x : Y → [0,∞] by ϕf,x(y) = f(x, y), and similarly ψf,y(x) = f(x, y).
Show that for µ-almost all x ∈ X, ϕf,x is an τ -measurable, and for ν-
almost all y, ψf,y is an Σ-measurable.

(c) Suppose f is integrable on X × Y in the extended sense. Define F (x) =∫
Y
f(x, y) dν(y) and G(y) =

∫
X
f(x, y) dµ(x). Show F is defined µ-a.e.

and Σ-measurable. Similarly show G is defined ν-a.e., and τ -measurable.
Further, show and that

∫
X
F dµ =

∫
Y
Gdν =

∫
X×Y fd(µ× ν).

4. Let (X,Σ, µ), (Y, τ, ν) be two σ-finite measure spaces, p ∈ [1,∞], and f : X ×
Y → R is Σ⊗ τ measurable. Let F (x) =

∫
Y
f(x, y) dν(y), and ψy,f be the slice

of f defined by ψy,f (x) = f(x, y). Show that ‖F‖Lp(X) 6
∫
Y
‖ψy,f‖Lp(X) dν(y).

[You should verify that when Y = {1, 2} with the counting measure, the above is exactly

Minkowski’s triangle inequality.]

5. For p ∈ [1,∞) define ‖f‖Lp,∞ = sup{λµ{|f | > λ}1/p | λ > 0}}, and the weak
Lp space (denoted by Lp,∞) by Lp,∞ = {f | ‖f‖Lp,∞ <∞}. [As usual, we use the

convention that functions that are equal almost everywhere are identified with each other.]

(a) If f ∈ Lp, show f ∈ Lp,∞ and ‖f‖Lp,∞ 6 ‖f‖p. Is the converse true?

(b) If f, g ∈ Lp,∞, show that f + g ∈ Lp,∞. Show further that ‖f + g‖Lp,∞ 6
c(‖f‖Lp,∞ +‖g‖Lp,∞) for some constant c independent of f, g. [Thus ‖·‖Lp,∞
is called a quasi-norm, and Lp,∞ is called a quasi-Banach space.]

(c) If µ is σ-finite, 1 6 p < q < r <∞ and f ∈ Lp,∞ ∩Lr,∞ then show f ∈ Lq.

Optional problems, and details in class I left for you to check.

∗ Show that the Lebesgue measure on Rm+n is the product of the Lebesgue
measurs on Rm and Rn respectively. [Note, you’ve previously seen that L(Rm+n) )
L(Rm)⊗ L(Rn); however B(Rm+n) = B(Rm)⊗ B(Rn).]

∗ For E ∈ Σ ⊗ τ , define fE(x) = ν(Sx(E)) and gE(y) = µ(Ty(E)). Show that
f : X → R and g : Y → R are measurable. [Hint: First assume µ, ν are finite. Let

Λ = {E | fE , gE are measurable}. Show that Λ is a λ-system, and Λ contains all rectangles.]

∗ Verify that µ× ν def
=
∫
X
ν(Sx(E)) dµ(x) is a measure.
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Assignment 11: Assigned Wed 11/14. Due Wed 11/21

1. If 1
p + 1

q = 1, f ∈ Lp, g ∈ Lq show that f ∗ g is bounded and continuous. If

p, q <∞, show further f ∗ g(x)→ 0 as |x| → ∞.

2. Define S(Rd) = {f ∈ C∞(Rd) | ∀m,α, supx(1 + |x|m)|Dαf(x)| < ∞}. Here
m ∈ N ∪ {0}, and α = (α1, . . . , αd) ∈ (N ∪ {0})d is a multi-index, and Dαf =
∂α1

1 · · · ∂
αd
d f . The space S is called the Schwartz Space.

(a) If p ∈ [1,∞), f ∈ Lp(Rd), g ∈ S(Rd), show that f ∗ g ∈ C∞(Rd), and
further Dα(f ∗ g) = f ∗ (Dαg).

(b) Show that S is dense subset of Lp for p ∈ [1,∞).

(c) Show that C∞c is a dense subset of Lp for p ∈ [1,∞).

3. (a) If f, g ∈ L2
per([0, 1]), show that (f ∗ g)

∧
(n) = f̂(n)ĝ(n). [Here L2

per([0, 1])

denotes (equivalence classes of) all Lebesgue measurable functions f : R → C which

have period 1 (i.e. τ1f = f), and
∫ 1
0 |f |

2 dλ <∞.]

(b) If f, g ∈ L2([0, 1]), show that (fg)
∧

(n) = f̂ ∗ ĝ(n)
def
=
∑
m∈Z f̂(m)ĝ(n−m).

4. Though I encourage you to check the properties on the Dirichlet and Fejér kernels
stated in the optional problems, you may assume them here without proof.

(a) If f ∈ Cper[0, 1], show that (σNf) → f uniformly. [Here Cper[0, 1] = {f ∈
C(R) | τ1f = f} denotes all continuous functions with period 1.]

If f ∈ Cper[0, 1], it turns out that the partial sums SNf need not converge to
f even pointwise. (In fact, there exist many f ∈ Cper([0, 1]) such that SNf
is divergent on a dense Gδ in [0, 1].) If, however, f is a little bit better than
continuous, then the Fourier series of f converges to f pointwise.

(b) Let f ∈ Cper([0, 1]) and α > 0. If supx,y
|f(x)−f(y)|
|x−y|α < ∞, then show that

(SNf)→ f pointwise, as N →∞. [In fact, (SNf)→ f uniformly.]

5. Let µ be a finite signed Borel measure on [0, 1]. If ∀n ∈ Z µ̂(n) = 0, show µ = 0.

Optional problems, and details in class I left for you to check.

∗ If f ∈ Lp, g ∈ Lq with p, q ∈ [1,∞] and 1/p+ 1/q > 1, show that f ∗ g = g ∗ f .

∗ If f ∈ Lp, g ∈ Lq, h ∈ Lr with p, q, r ∈ [1,∞] and 1/p + 1/q + 1/r > 2, show
that (f ∗ g) ∗ h = f ∗ (g ∗ h).

∗ Define the Derichlet kernel by DN (x) =
∑N
−N exp(2πinx).

(a) Show that SNf(x) = DN ∗ f(x)
def
=
∫ 1

0
f(y)DN (x − y) dy. [Recall, SNf =∑N

−N f̂(n)en, where en(x) = e2πinx, and f̂(n) = 〈f, en〉 =
∫ 1
0 f(y)ēn(y) dy.]

(b) Show that DN (x) = sin((2N+1)πx)
sin(πx) . Further show limN→∞

∫ 1−ε
ε
|DN | =∞.

∗ Define Fejér kernel by FN = 1
N

∑N−1
0 Dn.

(a) Show that σNf
def
= 1

N

∑N−1
0 Snf = FN ∗ f .

(b) Show that FN (x) = sin2(Nπx)
N sin2(πx)

, and that {FN} is an approximate identity.

Assignment 12: Assigned Wed 11/21. Due Wed 11/28

1. (a) Let n ∈ N be even, 1
n + 1

n′ = 1. If f̂ ∈ `n′(Z), show that f ∈ Lnper([0, 1])

and ‖f‖Ln 6 ‖f̂‖`n′ . [Hint: Let n = 2m. Then ‖f‖nLn = ‖(fm)
∧‖2`2 .]

(b) Let s > 1
2 −

1
p > 0, and 1

p + 1
q = 1. If f ∈ Hs

per show f̂ ∈ `q(Z). Further

show that the map f 7→ f̂ is continuous from Hs
per → `q.

(c) If n ∈ N is even, s > 1
2 −

1
n then show that Hs

per ⊆ Ln([0, 1]) and that the
inclusion map is continuous. [This is one part of the Sobolev embedding theorem.]

2. Let f ∈ L2([0, 1]). Show that there exists u ∈ C∞([0, 1] × (0,∞)) such that
u(0, t) = u(1, t), limt→0+‖u(·, t)− f(·)‖2 = 0, and ∂tu− ∂2

xu = 0. [Hint: You may

assume the result of the optional problems.]

3. Finish the change of variable proof using the following approach. Recall U, V ⊆
Rd are open connected sets, and ϕ : U → V is a C1 bijection whose inverse is
also C1. Our aim is to show λ(ϕ(A)) =

∫
A
|det∇ϕ| dλ for all A ⊆ U Borel.

Assume first that ϕ,ϕ−1 are both uniformly C1, and U, V are bounded. In this
case we showed in class that λ(ϕ(A)) 6

∫
A
|det∇ϕ| dλ for all Borel A ⊆ U .

(a) If f : V → [0,∞] is Borel, show that
∫
V
f 6

∫
U
f ◦ ϕ |det∇ϕ| dλ.

(b) Show that λ(A) =
∫
A
|det∇ϕ| dλ. [Hint: This follows very quickly previous part.]

(c) Prove the previous subpart without the additional assumptions that ϕ,ϕ−1

are uniformly C1, and U, V are bounded.

Optional problems, and details in class I left for you to check.

∗ (a) If f ∈ L1
per([0, 1]), show that 2|f̂(n)| 6

∫ 1

0
|f(y)− f(y − 1

2n )| dy.

(b) Use the previous subpart to give an alternate (perhaps more illuminating)
proof of the Riemann Lebesgue lemma.

(c) If α ∈ (0, 1), f ∈ Cαper([0, 1]), show that supn|n|
α|f(n)| <∞.

(d) Show by example that the converse of the previous part is false.

∗ For any s > 0 show that Hs
per is a closed subspace of L2.

∗ Let 0 6 r 6 s. Show that any bounded sequence in Hs
per has a subsequence that

is convergent subsequence in Hr
per.

∗ Let n ∈ N ∪ {0}, α ∈ [0, 1) s > 1/2 + n + α. Show that Hs
per ⊆ Cn,αper [0, 1] and

the inclusion map is continuous. [Recall Cn,αper [0, 1] is the set of all Cn periodic functions

on R (i.e. τ1f = f) whose nth derivative is Hölder continuous with exponent α.]

∗ If ‖∇ϕ−I‖L∞ < ε, and ϕ(0) = 0, then show that ϕ((−1, 1)d) ⊆ (−1−dε, 1+dε)d.

∗ (Polar Coordinates.) Let f ∈ L1(R2). Show that∫
R2

f(x, y) dx dy =

∫
[0,∞)×[0,2π)

f(r cos θ, r sin θ) r dr dθ
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Assignment 13: Assigned Wed 11/28. Due Wed 12/05

1. (a) If f ∈ L1(Rd) and f is not identically 0 (a.e.), then show that Mf 6∈ L1(Rd).
The next few subparts outline a proof that for any p > 1, the maximal function
is an Lp bounded sublinear operator. Let p ∈ (1,∞), f ∈ Lp(Rd) and f > 0.

(b) Show that λ{Mf > α} 6 3d

(1−δ)α
∫
{f>δα} f , for any t > 0, δ ∈ (0, 1) and

f > 0 measurable.

(c) Let p ∈ (1,∞], and d ∈ N. Show that there exists a constant c = c(p, d)
such that ‖Mf‖p 6 c‖f‖p for all f ∈ Lp(Rd). [Hint: For p < ∞, use the

previous part, the identity ‖Mf‖pp =
∫∞
0 pαp−1λ{Mf > α} dα and optimise in δ.]

2. Let µ be a finite signed Borel measure on Rd. Define Dµ(x) = limr→0+
µ(B(x,r))
λ(B(x,r)) .

(a) If µ ⊥ λ, show that Dµ = 0 almost everywhere with respect to λ. [Hint:

Write µ = µ1 +µ2 where supp(µ1) is compact with Lebesgue measure 0, and ‖µ2‖ < ε.]

(b) If µ ⊥ λ, show that D|µ| =∞ almost everywhere with respect to µ!

(c) Show that Dµ = dµac

dλ almost everywhere with respect to λ. [Here µ = µs+µac

is the Lebesgue decomposition of µ with respect to λ.]

3. Suppose f : R → R is a monotone function. Show that f is differentiable
almost everywhere. [Hint: Suppose first f is monotone, injective and bounded. Show that

µ(A) = λ(f(A)) defines a finite Borel measure. How does this help?]

4. If f, g : [0, 1] → R are absolutely continuous, then show that fg is absolutely

continuous. Conclude [fg]10 =
∫ 1

0
f ′g +

∫ 1

0
fg′.

5. Show that f : R → R is Lipshitz if and only if f is absolutely continuous and
f ′ ∈ L∞(R).

Optional problems, and details in class I left for you to check.

∗ Show that the arbitary union of closed (non-degenerate) cells is Lebesgue mea-
surable.

∗ Find an example of E ∈ L(Rd) and x ∈ Rd such that limr→0
λ(E∩B(x,r))
λ(B(x,r)) does

not exist.

∗ Suppose f : R → R is measurable. Let α, β > 0 with α/β 6∈ Q. If f has period
α, and also has period β (i.e. for all x ∈ R, f(x) = f(x + α) = f(x + β)),
then show that f is constant almost everywhere. (But f need not be constant
everywhere!)

∗ We say the family {Er} shrinks nicely to x ∈ Rd if there exists δ > 0 such that
for all r, Er ⊆ B(x, r) and λ(Er) > δλ(B(x, r)). If {Er} shrinks nicely to x,
show that lim 1

λ(Er)

∫
Er
f = f(x) for all Lebesgue points of f .

∗ If f ∈ L1(Rd), show that Mf(x) > |f(x)| at all Lebesgue points of f .

∗ If f : [a, b] → R is absolutely continuous, then show that f is of bounded
variation, and that the variation is absolutely continuous. Conclude f can be
written as the difference of two monotone absolutely continuous functions.
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