
Homework Assignment 2
Assigned Fri 01/14. Due Fri 01/21.

When unspecified, always assume F is a field, and V is a vector space over F .

1. Show that −1±
√
3i

2 is a cube root of 1.

2. For all v ∈ V , and α ∈ F , show that αv = 0 if and only if α = 0, or v = 0.

3. For this question, F = R, V ⊆ R2 is the specified subset, and addition and scalar multiplication
are defined as the respective operation for R2.

(a) Let α ∈ R, V = {
(
x1
x2

)
| x1, x2 ∈ R, x1 + x2 = α}. For what values of α is V a vector space?

(b) Let V = {
(
x1
x2

)
| x1, x2 ∈ R, x2 = x21}. Is V a vector space? Justify.

(c) Let f : R → R be a function. V = {
(
x1
x2

)
| x1, x2 ∈ R, x2 = f(x1)}. Show that V is a vector

space, if and only if ∃α ∈ R, such that f(x) = αx for all x ∈ R.

4. Let F we a field. We define P (F ) to be the set of all polynomials over F . That is

P (F ) = {f
∣∣ ∃n ∈ N, and a0, . . . , an ∈ F � f(x) = a0 + a1x+ · · ·+ anx

n, ∀x ∈ F}.

We define vector addition, and scalar multiplication as we did for functions (i.e. f + g is the
function such that for all x ∈ F , (f + g)(x) = f(x) + g(x)).

(a) Show that P (F ) is a vector space.

(b) Suppose now that F = R or F = C. Let f ∈ P (F ). Show that there exists a unique n ∈ N,
and unique a0, . . . , an ∈ F with an 6= 0, such that f(x) = a0 + a1x + · · · anxn for all x ∈ F .
This unique n is called the degree of the polynomial f . [Note: What you have to prove here is

to suppose f(x) =
∑m

0 aix
i =

∑n
0 bix

i, with am, bn 6= 0, and show that this necessarily means m = n, and

ai = bi for all i.]

(c) Show that the previous problem is false if we don’t assume F = R or F = C.

(d) Let F = R or F = C. Let U be all elements of P (F ) with degree exactly n. With addition
and scalar multiplication defined as in P (F ), is U a vector space? Provide a proof, or counter
example.

(e) Let F = R or F = C, and let Pn(F ) be all elements of P (F ) with degree less than or equal
to n. Is Pn(F ) a vector space? Provide a proof, or counter example.

5. (Quarternions) As mentioned today, the cross product on R3 really arises from a ‘vector multipli-
cation’ on R4. This problem describes that structure: Let i, j, k be ‘numbers’, with a multiplication
defined such that i2 = j2 = k2 = ijk = −1.

(a) Assuming that {±1,±i,±j,±k} satisfy the multiplicative field axioms except commutativity,
write down a multiplication table for them.

(b) Now for xi, yi ∈ R, formally define

(x1 + ix2 + jx3 + kx4)(y1 + iy2 + jy3 + ky4)

by using the distributive law, and your rules for multiplying i, j, k from the previous part.
Also define addition component wise:

(x1 + ix2 + jx3 +kx4)+(y1 + iy2 + jy3 +ky4) = (x1 +y1)+(x2 +y2)i+(x3 +y3)j+(x4 +y4)k

Show that this addition and multiplication above satisfy all the field axioms, except commu-
tativity of multiplication. [Most of the axioms are straightforward enough to verify, and torturous to

write down. Only explicitly write down the proof that multiplicative inverses exist. Verify the remaining for

yourself, but don’t turn it in.]


