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2. Syllabus Overview
• Class website and full syllabus: https://www.math.cmu.edu/~gautam/sj/teaching/2022-23/944-scalc-finance1
• TA’s: Jonghwa Park <jonghwap@andrew.cmu.edu>.
• Homework Due: 10:10AM Oct 27, Nov 3, 10, 22, 29, Dec 6
• Midterm: Tue, Nov 15, in class
• Homework:

▷ Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
▷ 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
▷ One homework assignments can be turned in 24h late without penalty.
▷ Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines,

etc.).
▷ Collaboration is encouraged. Homework is not a test – ensure you learn from doing the homework.
▷ You must write solutions independently, and can only turn in solutions you fully understand.

• Academic Integrity
▷ Zero tolerance for violations (automatic R).
▷ Violations include:

– Not writing up solutions independently and/or plagiarizing solutions
– Turning in solutions you do not understand.
– Seeking, receiving or providing assistance during an exam.

▷ All violations will be reported to the university, and they may impose additional penalties.
• Grading: 10% homework, 30% midterm, 60% final.



Course Outline.
• Review of Fundamentals: Replication, arbitrage free pricing.
• Quick study of the multi-period binomial model.

▷ Simple example of replication / arbitrage free pricing.
▷ Understand conditional expectations. (Have an explicit formula.)
▷ Understand measurablity / adaptedness. (Can be stated easily in terms of coin tosses that have / have not

occurred.)
▷ Understand risk neutral measures. Explicit formula!

• Develop tools to price securities in continuous time.
▷ Brownian motion (not as easy as coin tosses)
▷ Conditional expectation: No explicit formula!
▷ Itô formula: main tool used for computation. Develop some intuition.
▷ Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need

a working knowledge.
▷ Derive and understand the Black-Scholes formula.



3. Replication and Arbitrage
3.1. Replication and arbitrage free pricing.
• Start with a financial market consisting of traded assets (stocks, bonds, money market, options, etc.)
• We model the price of these assets through random variables (stochastic processes).
• No Arbitrage Assumption:

▷ In order to make money, you have to take risk. (Can’t make something out of nothing.)
▷ Mathematically: For any trading strategy such that X0 = 0, and Xn ⩾ 0, you must also have Xn = 0

almost surely.
▷ Equivalently: There doesn’t exist a trading strategy with X0 = 0, Xn ⩾ 0 and P (Xn > 0) > 0.



• Arbitrage free price
▷ Now consider a non-traded asset Y (e.g. an option). How do you price it?
▷ Arbitrage free price: If given the opportunity to trade Y at price V0, the market remains arbitrage free,

then we say V0 is the arbitrage free price of Y .



• Replication
▷ We will almost always find the arbitrage free price by replication.
▷ Say the non-traded asset pays VN at time N (e.g. call options).
▷ Try and replicate the payoff :

– Start with X0 dollars.
– Use only traded assets and ensure that at maturity XN = VN .

▷ Then the arbitrage free price is uniquely determined, and must be X0.

Remark 3.1. The arbitrage free price is unique if and only if there is a replicating strategy! In this case, the
arbitrage free price is exactly the initial capital of the replicating strategy.



3.2. Example: One period Binomial model.
• Consider a market with a stock, and money market account.
• Interest rate for borrowing and lending is r. No transaction costs. Can buy and sell fractional quantities of

the stock.
• Model assumption: Flip a coin that lands heads with probability p1 ∈ (0, 1) and tails with probability

q1 = 1 − p1. Model S1 = uS0 if heads, and S1 = dS0 if tails.
▷ S0 is stock price at time 0 (known).
▷ S1 is stock price after one time period (random).
▷ u, d are model parameters (pre-supposed). Called the up and down factors. (Will always assume 0 < d < u.)

Proposition 3.2. There’s no arbitrage in this model if and only if d < 1 + r < u.

Proof.







Proposition 3.3. Say a security pays V1 at time 1 (V1 can depend on whether the coin flip is heads or tails).
The arbitrage free price at time 0 is given by

V0 = 1
1 + r


p̃1V1(H) + q̃1V1(T )

�
= 1

1 + r
ẼV1 , where p̃1 = 1 + r − d

u − d
, q̃1 = u − (1 + r)

u − d
.

The replicating strategy holds ∆0 = V1(H) − V1(T )
(u − d)S0

shares of stock at time 0.

Proof.









4. Multi-Period Binomial Model.
• Same setup as the one period case 0 < d < 1 + r < u, and toss coins that land heads with probability p1 and

tails with probability q1.
• Except now the security matures at time N > 1.
• Stock price: Sn+1 = uSn if n + 1-th coin toss is heads, and Sn+1 = dSn otherwise.
• To replicate it a security, we start with capital X0.
• Buy ∆0 shares of stock, and put the rest in cash.
• Get X1 = ∆0S1 + (1 + r)(X0 − ∆0S0).
• Repeat. Self Financing Condition: Xn+1 = ∆nSn+1 + (1 + r)(Xn − ∆nSn).
• Adaptedness: ∆n can only depend on outcomes of coin tosses before n!



Proposition 4.1. Consider a security that pays VN at time N . Then for any n ⩽ N :

Vn = 1
(1 + r)N−n

ẼnVN , ∆n = Vn+1(ωn+1 = H) − Vn+1(ωn+1 = T )
(u − d)Sn

.

• Vn is the arbitrage free price at time n ⩽ N .
• ∆n is the number of shares held in the replicating portfolio at time n (trading strategy).

Question 4.2. Why does this work?

Question 4.3. What is Ẽn? (It’s different from E, and different from En).



4.1. Quick review probability (finite Sample spaces). This is just a quick review for you to fix notation.
You should already be familiar with this material from previous courses, and we won’t go over it in class. We
will, however, spend some time studying conditional expectation.

Let N ∈ N be large (typically the maturity time of financial securities).

Definition 4.4. The sample space is the set Ω = {(ω1, . . . , ωN ) | each ωi represents the outcome of a coin toss}.

▷ E.g. ωi ∈ {H, T}, or ωi ∈ {±1}. (Each ωi could also represent the outcome of the roll of a M sided die.)

Definition 4.5. A sample point is a point ω = (ω1, . . . , ωN ) ∈ Ω.

▷ Each sample point represents the outcome of a sequence of all coin tosses from 1 to N .

Definition 4.6. A probability mass function (PMF for short) is a function p : Ω → [0, 1] such that
P

ω∈Ω p(ω) = 1.

Example 4.7. Typical example: Fix p1 ∈ (0, 1), q1 = 1 − p1 and set p(ω) = p
H(ω)
1 q

T (ω)
1 . Here H(ω) is the number

of heads in the sequence ω = (ω1, . . . , ωN ), and T (ω) is the number of tails.

Definition 4.8. An event is a subset of Ω. Define P (A) =
P

ω∈A p(ω).

▷ P is called the probability measure associated with the PMF p.

Example 4.9. A{ω ∈ Ω | ω1 = +1}. Check P (A) = p1.

4.2. Random Variables and Independence.

Definition 4.10. A random variable is a function X : Ω → R.



Example 4.11. X(ω) =
(

1 ω2 = +1 ,

−1 ω2 = −1 ,
is a random variable corresponding to the outcome of the second coin

toss.
Definition 4.12. The expectation of a random variable X is EX =

P
X(ω)p(ω).

Remark 4.13. Note if Range(X) = {x1, . . . , xn}, then EX =
P

X(ω)p(ω) =
Pn

1 xiP (X = xi).

Definition 4.14. The variance of a random variable is Var(X) = E(X − EX)2.
Remark 4.15. Note Var(X) = EX2 − (EX)2.
Definition 4.16. Two events are independent if P (A ∩ B) = P (A)P (B).
Definition 4.17. The events A1, . . . , An are independent if for any sub-collection Ai1 , . . . , Aik

we have
P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik

) = P (Ai1)P (Ai2) · · · P (Aik
) .

Remark 4.18. When n > 2, it is not enough to only require P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · · P (An)
Definition 4.19. Two random variables are independent if P (X = x, Y = y) = P (X = x)P (Y = y) for all
x, y ∈ R.
Definition 4.20. The random variables X1, . . . , Xn are independent if for all x1, . . . , xn ∈ R we have

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P (X1 = x1)P (X2 = x2) · · · P (Xn = xn) .

Remark 4.21. Independent random variables are uncorrelated, but not vice versa.



4.3. Filtrations.
• Let Ω = {(ω1, . . . , ωN ) | each ωi ∈ ±1 represents the outcome of a coin toss. }.

▷ It is convenient to visualize Ω and random variables by drawing trees.
▷ E.g. X = outcome (±1) of the second coin toss, Y = number of heads, etc.



Definition 4.22. We define a filtration on Ω as follows:
▷ F0 = {∅, Ω}.
▷ F1 = all events that can be described by only the first coin toss. E.g. A = {ω | ω1 = +1} ∈ F1.
▷ F2 = all events that can be described by only the first two coin toss.

– E.g. A = {ω | ω1 = +1} ∈ F2, B = {ω | ω1 = +1, ω2 = −1} ∈ F2.
▷ Fn = all events that can be described by only the first n coin tosses.

– E.g. A = {ω | ω1 = 1, ω3 = −1, ωn = 1} ∈ Fn.

Remark 4.23. Note {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ FN = P(Ω).

Remark 4.24. If A, B ∈ Fn, then so do Ac, Bc, A ∩ B, A ∪ B, A − B, B − A.



Definition 4.25. Let n ∈ {0, . . . , N}. We say a random variable X is Fn-measurable if X(ω) only depends on
ω1, . . . , ωn.
▷ Equivalently, for any B ⊆ R, the event {X ∈ B} ∈ Fn.

Remark 4.26 (Use in Finance). For every n, the trading strategy at time n (denoted by ∆n) must be Fn

measurable. We can not trade today based on tomorrows price.

Example 4.27. If we represent Ω as a tree, Fn measurablity can be visualized by checking constancy on leaves.



4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n ⩽ N . We define E(X | Fn) = EnX to be the random
variable given by

EnX(ω) =
X

xi∈Range(X)

xiP (X = xi | Πn(ω))

where Πn(ω) = {ω′ ∈ Ω | ω′
1 = ω1, . . . , ω′

n = ωn}
Remark 4.29. The above formula does not generalize well to infinite probability spaces. We will develop certain
properties of En, and then only use those properties going forward.

Example 4.30. If we represent Ω as a tree, EnX can be computed by averaging over leaves.

Remark 4.31. EnX is the “best approximation” of X given only the first n coin tosses.



Proposition 4.32. The conditional expectation EnX defined by the above formula satisfies the following two
properties:

(1) EnX is an Fn-measurable random variable.
(2) For every A ∈ Fn,

X

ω∈A

EnX(ω)p(ω) =
X

ω∈A

X(ω)p(ω).

Remark 4.33. This property is used to define conditional expectations in the continuous time setting. It turns
out that there is exactly one random variable that satisfies both the above properties; and thus we define EnX
to be the unique random variable which satisfies both the above properties.

Remark 4.34. Note, choosing A = Ω, we see E(EnX) = EX.



Proposition 4.35. (1) If X, Y are two random variables and α ∈ R, then En(X + αY ) = EnX + αEnY .
(2) (Tower property) If m ⩽ n, then Em(EnX) = EmX.
(3) If X is Fn measurable, and Y is any random variable, then En(XY ) = XEnY .



Proposition 4.36. (1) If X is measurable with respect to Fn, then EnX = X.
(2) If X is independent of Fn then EnX = EX.

Remark 4.37. We say X is independent of Fn if for every A ∈ Fn and B ⊆ R, the events A and {X ∈ B} are
independent.

Example 4.38. If X only depends on the (n + 1)th, (n + 2)th, . . . , nth coin tosses and not the 1st, 2nd, . . . , nth

coin tosses, then X is independent of Fn.



Proposition 4.39 (Independence lemma). If X is independent of Fn and Y is Fn-measurable, and f : R → R
is a function then

Enf(X, Y ) =
mX

i=1
f(xi, Y )P (X = xi) , where {x1, . . . , xm} = X(Ω) .
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mX
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4.5. Martingales.

Definition 4.40. A stochastic process is a collection of random variables X0, X1, . . . , XN .

Example 4.41. Typically Xn is the wealth of an investor at time n, or Sn is the price of a stock at time n.

Definition 4.42. A stochastic process is adapted if Xn is Fn-measurable for all n. (Non-anticipating.)

Remark 4.43. Requiring processes to be adapted is fundamental to Finance. Intuitively, being adapted forbids
you from trading today based on tomorrows stock price. All processes we consider (prices, wealth, trading
strategies) will be adapted.

Example 4.44 (Money market). Let Y0 = Y0(ω) = a ∈ R. Define Yn+1 = (1 + r)Yn. (Here r is the interest rate.)

Example 4.45 (Stock price). Let S0 ∈ R. Define Sn+1(ω) =
(

uSn(ω) ωn+1 = 1 ,

dSn(ω) ωn+1 = −1 .



Definition 4.46. We say an adapted process Mn is a martingale if EnMn+1 = Mn. (Recall EnY = E(Y | Fn).)

Remark 4.47. Intuition: A martingale is a “fair game”.

Example 4.48 (Unbiased random walk). If ξ1, . . . , ξN are i.i.d. and mean zero, then Xn =
Pn

k=1 ξk is a martingale.





Remark 4.49. If M is a martingale, then for every m ⩽ n, we must have EmMn = Mm.

Remark 4.50. If M is a martingale then EMn = EM0 = M0.





4.6. Change of measure.
• Gambling in a Casino: If it’s a martingale, then on average you won’t make or lose money.
• Stock market: Bank always pays interest! Not looking for a “break even” strategy.
• Mathematical tool that helps us price securities: Find a Risk Neutral Measure.

▷ Discounted stock price is (usually) not a martingale.
▷ Invent a “risk neutral measure” which the discounted stock price is a martingale.
▷ Securities can be priced by taking a conditional expectation with respect to the risk neutral measure. (That’s

the meaning of Ẽn in Proposition 4.1.)



Definition 4.51. Let Dn = (1 + r)−n be the discount factor. (So Dn$ in the bank at time 0 becomes 1$ in the
bank at time n.)

• Invent a new probability mass function p̃.
• Use a tilde to distinguish between the new, invented, probability measure and the old one.

▷ P̃ the probability measure obtained from the PMF p̃ (i.e. P̃ (A) =
P

ω∈A p̃(ω)).
▷ Ẽ, Ẽn conditional expectation with respect to P̃ (the new “risk neutral” coin)

Definition 4.52. We say P and P̃ are equivalent if for every A ∈ FN , P (A) = 0 if and only if P̃ (A) = 0.

Definition 4.53. A risk neutral measure is an equivalent measure P̃ under which DnSn is a martingale. (I.e
Ẽn(Dn+1Sn+1) = DnSn.)

Remark 4.54. If there are more than one risky assets, S1, . . . , Sk, then we require DnS1
n, . . . , DnSk

n to all be
martingales under the risk neutral measure P̃ .

Remark 4.55. Proposition 4.1 says that any security with payoff VN at time N has arbitrage free price
Vn = 1

Dn
Ẽn(DN VN ) at time n. (Called the risk neutral pricing formula.)



Proposition 4.56. Let P̃ be an equivalent measure under which the coins are i.i.d. and land heads with
probability p̃1 and tails with probability q̃1 = 1 − p̃1.

(1) Under P̃ , we have Ẽn(Dn+1Sn+1) = p̃1u+q̃1d
1+r DnSn.

(2) P̃ is the risk neutral measure if and only if p̃1u+ q̃1d = 1+r. (Explicitly p̃1 = 1+r−d
u−d , and q̃1 = u−(1+r)

u−d .)





Theorem 4.57. Let Xn represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if
and only if the discounted wealth DnXn is a martingale under the risk neutral measure P̃ .

Remark 4.58. Recall a portfolio is self financing if Xn+1 = ∆nSn+1 + (1 + r)(Xn − ∆nSn) for some adapted
process ∆n.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t look into the future.
(2) All replication has to be done using self-financing portfolios.









Theorem 4.57. Let Xn represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if
and only if the discounted wealth DnXn is a martingale under the risk neutral measure P̃ .
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(2) All replication has to be done using self-financing portfolios.



Proof of Proposition 4.1.







Example 4.59. Consider two stocks S1 and S2, u = 2, d = 1/2.
▷ The coin flips for S1 are heads with probability 90%, and tails with probability 10%.
▷ The coin flips for S2 are heads with probability 99%, and tails with probability 1%.
▷ Which stock do you like more?
▷ Amongst a call option for the two stocks with strike K and maturity N , which one will be priced higher?



Remark 4.60. Even though the stock price changes according to a coin that flips heads with probability p1,
the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when
computing ẼnVN , we use our new invented “risk neutral” coin that flips heads with probability p̃1 and tails
with probability q̃1.

Concepts that will be generalized to continuous time.
• Probability measure: Lebesgue integral, and not a finite sum. Same properties.
• Filtration: Same intuition. No easy description.
• Conditional expectation: Same properties, no formula.
• Risk neutral measure: Formula for P̃ is complicated (Girsanov theorem.)
• Everything still works because of of Theorem 4.57. Understanding why is harder.



5. Stochastic Processes
5.1. Brownian motion.
• Discrete time: Simple Random Walk.

▷ Xn =
Pn

1 ξi, where ξi’s are i.i.d. Eξi = 0, and Range(ξi) = {±1}.
• Continuous time: Brownian motion.

▷ Yt = Xn + (t − n)ξn+1 if t ∈ [n, n + 1).
▷ Rescale: Y ε

t =
√

εYt/ε. (Chose
√

ε factor to ensure Var(Y ε
t ) ≈ t.)

▷ Let Wt = lim
ε→0

Y ε
t .

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

▷ Named after Robert Brown (a botanist).
▷ Definition is intuitive, but not as convenient to work with.







• If t, s are multiples of ε: Y ε
t − Y ε

s ∼ √
ε

(t−s)/εX

i=1
ξi

ε→0−−−→ N (0, t − s).

• Y ε
t − Y ε

s only uses coin tosses that are “after s”, and so independent of Y ε
s .

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wt − Ws ∼ N (0, t − s),
(2) Wt − Ws is independent of Fs.





5.2. Sample space, measure, and filtration.
• Discrete time: Sample space Ω = {(ω1, . . . , ωN ) | ωi represents the outcome of the ith coin toss}.
• View (ω1, . . . , ωN ) as the trajectory of a random walk.
• Continuous time: Sample space Ω = C([0, ∞)) (space of continuous functions).

▷ It’s infinite. No probability mass function!
▷ Mathematically impossible to define P (A) for all A ⊆ Ω.



• Restrict our attention to G, a subset of some sets A ⊆ Ω, on which P can be defined.
▷ G is a σ-algebra. (Closed countable under unions, complements, intersections.)

• P is called a probability measure on (Ω, G) if:
▷ P : G → [0, 1], P (∅) = 0, P (Ω) = 1.
▷ P (A ∪ B) = P (A) + P (B) if A, B ∈ G are disjoint.

▷ If An ∈ G, P
� ∞[

1
An

�
= lim

n→∞
P (An).

• Random variables are measurable functions of the sample space:
▷ Require {X ∈ A} ∈ G for every “nice” A ⊆ R.
▷ E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3, 4)} ∈ G, etc.
▷ Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.



• Expectation is a Lebesgue Integral: Notation EX =
Z

Ω
X dP =

Z

Ω
X(ω)dP (ω).

▷ No simple formula.
▷ If X =

P
ai1Ai

, then EX =
P

aiP (Ai).

▷ 1A is the indicator function of A: 1A(ω) =
(

1 ω ∈ A

0 ω ̸∈ A



Proposition 5.3 (Useful properties of expectation).
(1) (Linearity) α, β ∈ R, X, Y random variables, E(αX + βY ) = αEX + βEY .
(2) (Positivity) If X ⩾ 0 then EX ⩾ 0. If X ⩾ 0 and EX = 0 then X = 0 almost surely.
(3) (Layer Cake) If X ⩾ 0, EX =

Z ∞

0
P (X ⩾ t) dt.

(4) More generally, if φ is increasing, φ(0) = 0 then Eφ(X) =
Z ∞

0
φ′(t) P (X ⩾ t) dt.

(5) (Unconscious Statistician Formula) If PDF of X is p, then Ef(X) =
Z ∞

−∞
f(x)p(x) dx.



• Filtrations:
▷ Discrete time: Fn = events described using the first n coin tosses.
▷ Coin tosses doesn’t translate well to continuous time.
▷ Discrete time try #2: Fn = events described using the trajectory of the SRW up to time n.
▷ Continuous time: Ft = events described using the trajectory of the Brownian motion up to time t.
▷ If ti ⩽ t, Ai ⊆ R then {Wt1 ∈ A1, . . . , Wtn ∈ An} ∈ Ft. (Need all ti ⩽ t!)
▷ As before: if s ⩽ t, then Fs ⊆ Ft.
▷ Discrete time: F0 = {∅, Ω}. Continuous time: F0 = {A ∈ G | P (A) ∈ {0, 1}}.





5.3. Conditional expectation.
• Notation Et(X) = E(X | Ft) (read as conditional expectation of X given Ft)
• No formula! But same intuition as discrete time.
• EtX(ω) = “average of X over Πt(ω)”, where Πt(ω) = {ω′ ∈ Ω | ω′(s) = ω(s) ∀s ⩽ t}.
• Mathematically problematic: P (Πt(ω)) = 0 (but it still works out.)



Definition 5.4. EtX is the unique random variable such that:
(1) EtX is Ft-measurable.
(2) For every A ∈ Ft,

Z

A

EtX dP =
Z

A

X dP

Remark 5.5. Choosing A = Ω implies E(EtX) = EX.

Proposition 5.6 (Useful properties of conditional expectation).
(1) If α, β ∈ R are constants, X, Y , random variables Et(αX + βY ) = αEtX + βEtY .
(2) If X ⩾ 0, then EtX ⩾ 0. Equality holds if and only if X = 0 almost surely.
(3) (Tower property) If 0 ⩽ s ⩽ t, then Es(EtX) = EsX.
(4) If X is Ft measurable, and Y is any random variable, then Et(XY ) = XEtY .
(5) If X is Ft measurable, then EtX = X (follows by choosing Y = 1 above).
(6) If Y is independent of Ft, then EtY = EY .

Remark 5.7. These properties are exactly the same as in discrete time.



Lemma 5.8 (Independence Lemma). If X is Ft measurable, Y is independent of Ft, and f = f(x, y) : R2 → R
is any function, then

Etf(X, Y ) = g(Y ) , where g(y) = Ef(X, y) .

Remark 5.9. If pY is the PDF of Y , then Etf(X, Y ) =
Z

R
f(X, y) pY (y) dy.



5.4. Martingales.

Definition 5.10. An adapted process M is a martingale if for every 0 ⩽ s ⩽ t, we have EsMt = Ms.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information available today
will not change your expected return.



Proposition 5.12. Brownian motion is a martingale.

Proof.







5.4. Martingales.

Definition 5.11. An adapted process M is a martingale if for every 0 ⩽ s ⩽ t, we have EsMt = Ms.

Remark 5.12. As with discrete time, a martingale is a fair game: stopping based on information available today
will not change your expected return.



Proposition 5.13. Brownian motion is a martingale.

Proof.



6. Stochastic Integration
6.1. Motivation.
• Hold bt shares of a stock with price St.
• Only trade at times P = {0 = t1 < . . . , tn = T}

• Net gain/loss from changes in stock price:
n−1X

k=0
btk

∆kS, where ∆kS = Stk+1 − Stk
.

• Trade continuously in time. Expect net gain/loss to be lim
∥P ∥→0

n−1X

k=0
btk

∆kS =
Z T

0
bt dSt.

▷ ∥P∥ = maxk(tk+1 − tk).

▷ Riemann-Stieltjes integral: lim
∥P ∥→0

n−1X

k=0
bξk

∆kS =
Z T

0
bt dSt,

▷ The ξk ∈ [tk, tk+1] can be chosen arbitrarily.
▷ Only works if the first variation of S is finite. False for most stochastic processes.



6.2. First Variation.

Definition 6.1. For any process X, define the first variation by

V[0,T ](X) def= lim
∥P ∥→0

n−1X

k=0
|∆kX| def= lim

∥P ∥→0

n−1X

k=0
|Xtk+1 − Xtk

| .

Remark 6.2. If X(t) is a differentiable function of t then V[0,T ]X < ∞.

Proposition 6.3. EV[0,T ]W = ∞
Remark 6.4. In fact, V[0,T ]W = ∞ almost surely. Brownian motion does not have finite first variation.

Remark 6.5. The Riemann-Stieltjes integral
R T

0 bt dWt does not exist.







6.3. Quadratic Variation.

Definition 6.6. If M is a continuous time adapted process, define

[M, M ]T = lim
∥P ∥→0

n−1X

k=0
(Mtk+1 − Mtk

)2 = lim
∥P ∥→0

n−1X

k=0
(∆kM)2 .

Proposition 6.7. For continuous processes the following hold:
(1) Finite first variation implies the quadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.



Proposition 6.8. [W, W ]T = T almost surely.

Remark 6.9. For use in the proof: Var(N (0, σ2)2) = EN (0, σ2)4 − (EN (0, σ2)2)2 = 2σ2.

Proof:.









Proposition 6.10. W 2
t − [W, W ]t is a martingale.





Theorem 6.11. Let M be a continuous martingale.
(1) EM2

t < ∞ if and only if E[M, M ]t < ∞.
(2) In this case M2

t − [M, M ]t is a continuous martingale.
(3) Conversely, if M2

t − At is a martingale for any continuous, increasing process A such that A0 = 0, then
we must have At = [M, M ]t.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.



Remark 6.13. If X has finite first variation, then |Xt+δt − Xt| ≈ O(δt).

Remark 6.14. If X has finite quadratic variation, then |Xt+δt − Xt| ≈ O(
√

δt) ≫ O(δt).



6.4. Itô Integrals.
• Dt = D(t) some adapted process (position on an asset).
• P = {0 = t0 < t1 < · · ·} increasing sequence of times.
• ∥P∥ = maxi ti+1 − ti, and ∆iX = Xti+1 − Xti

.
• W : standard Brownian motion.

• IP (T ) def=
n−1X

i=0
Dti∆iW + Dtn(WT − Wtn)

Definition 6.15. The Itô Integral of D with respect to Brownian motion is defined by

IT =
Z T

0
Dt dWt = lim

∥P ∥→0
IP (T ) .

Remark 6.16. Suppose for simplicity T = tn.
(1) Riemann integrals: lim

∥P ∥→0

X
Dξi

∆iW exists, for any ξi ∈ [ti, ti+1].

(2) Itô integrals: Need ξi = ti for the limit to exist.



Theorem 6.17. If E

Z T

0
D2

t dt < ∞ a.s., then:

(1) IT = lim
∥P ∥→0

IP (T ) exists a.s., and EI(T )2 < ∞.

(2) The process IT is a martingale: EsIt = Es

Z t

0
Dr dWr =

Z s

0
Dr dWr = Is

(3) [I, I]T =
Z T

0
D2

t dt a.s.

Remark 6.18. If we only had
Z T

0
D2

t dt < ∞ a.s., then I(T ) = lim
∥P ∥→0

IP (T ) still exists, and is finite a.s. But it

may not be a martingale (it’s a local martingale).



Corollary 6.19 (Itô isometry). E
�Z T

0
Dt dWt

�2
= E

Z T

0
D2

t dt

Proof.



















Theorem 6.17. If E

Z T

0
D2

t dt < ∞ a.s., then:

(1) IT = lim
∥P ∥→0

IP (T ) exists a.s., and EI(T )2 < ∞.

(2) The process IT is a martingale: EsIt = Es

Z t

0
Dr dWr =

Z s

0
Dr dWr = Is

(3) [I, I]T =
Z T

0
D2

t dt a.s.

Remark 6.18. If we only had
Z T

0
D2

t dt < ∞ a.s., then I(T ) = lim
∥P ∥→0

IP (T ) still exists, and is finite a.s. But it

may not be a martingale (it’s a local martingale).



Corollary 6.19 (Itô isometry). E
�Z T

0
Dt dWt

�2
= E

Z T

0
D2

t dt

Proof.



Intuition for Theorem 6.17 (2). Check IP (T ) is a martingale.







Proposition 6.20. If α, α̃ ∈ R, D, D̃ adapted processes
Z T

0
(αDs + α̃D̃s) dWs = α

Z T

0
Ds dWs + α̃

Z T

0
D̃s dWs

Proposition 6.21.
Z T1

0
Ds dWs +

Z T2

T1

Ds dWs

Question 6.22. If D ⩾ 0, then must
R T

0 Dt dWt ⩾ 0?



Remark 6.23. (1) For Riemann-Stieltjes integrals d

dt

�Z t

0
Dr dSr

�
= DtSt.

(2) For Itô integrals: d

dt

�Z t

0
Dr dWr

�
typically does not exist.



6.5. Semi-martingales and Itô Processes.

Question 6.24. What is
Z t

0
Ws dWs?



Definition 6.25. A semi-martingale is a process of the form X = X0 + B + M where:
▷ X0 is F0-measurable (typically X0 is constant).
▷ B is an adapted process with finite first variation (aka bounded variation).
▷ M is a martingale.

Definition 6.26. An Itô-process is a semi-martingale X = X0 + B + M , where:

▷ Bt =
Z t

0
bs ds, with

Z t

0
|bs| ds < ∞

▷ Mt =
Z t

0
σs dWs, with

Z t

0
|σs|2 ds < ∞

Remark 6.27. Short hand notation for Itô processes: dXt = bt dt + σt dWt.

Remark 6.28. Expressing X = X0 + B + M (or dX = b dt + σ dW ) is called the semi-martingale decomposition
or the Itô decomposition of X.





Theorem 6.29 (Itô formula). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t

Remark 6.30. This is the main tool we will use going forward. We will return and study it thoroughly after
understanding all the notions involved.



Proposition 6.31. If X = X0 + B + M , then [X, X] = [M, M ].









Proposition 6.32 (Uniqueness). The Itô decomposition is unique. That is, if X = X0 + B + M = Y0 + C + N ,
with:
▷ B, C bounded variation, B0 = C0 = 0
▷ M, N martingale, M0 = N0 = 0.
Then X0 = Y0, B = C and M = N .







Corollary 6.33. Let dXt = bt dt + σt dWt with E
R t

0 bs ds < ∞ and E
R t

0 σ2
s ds < ∞. Then X is a martingale

if and only if b = 0.



Definition 6.34. If dX = b dt + σ dW , define
Z T

0
Dt dXt =

Z T

0
Dtbt dt +

Z T

0
Dtσt dWt.

Remark 6.35. Note
Z T

0
Dtbt dt is a Riemann integral, and

Z T

0
Dtσt dWt is a Itô integral.



6.6. Itô’s formula.

Remark 6.36. If f and X are differentiable, then
df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt



Theorem (Itô’s formula, Theorem 6.29). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t

Remark 6.37. If dXt = bt dt + σt dWt then

df(t, Xt) =
�

∂tf(t, Xt) + bt + 1
2σ2

t

�
dt + ∂xf(t, Xt)σt dWt .



Example 6.38. Find the quadratic variation of W 2
t .









Theorem (Itô’s formula, Theorem 6.29). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t

Remark 6.37. If dXt = bt dt + σt dWt then

df(t, Xt) =
�

∂tf(t, Xt) + bt∂xf(t, Xt) + 1
2σ2

t ∂2
xf(t, Xt)

�
dt + ∂xf(t, Xt)σt dWt .



Intuition behind Itô’s formula.



Intuition behind Itô’s formula.







Example 6.38. Find the quadratic variation of W 2
t .



Example 6.39. Find
Z t

0
Ws dWs.





Example 6.40. Let Mt = Wt, and Nt = W 2
t − t.

▷ We know M, N are martingales.
▷ Is MN a martingale?





Example 6.41. Let Xt = t sin(Wt). Is X2
t − [X, X]t a martingale?



Example 6.42. Say dMt = σt dWt. Show that M2 − [M, M ] is a martingale.





Theorem 6.43 (Lévy’s criterion). Let M be a continuous martingale such that M0 = 0 and [M, M ]t = t. Then
M is a Brownian motion.

























7. Review Problems
Problem 7.1 (From 2021 Midterm). Consider a discrete time market consisting of a bank and a stock. The bank
pays interest rate r = 5% at every time period. Let Sn denote the stock price at time n, and we know S0 = $10.
The stock price changes according to the flip of a fair coin: if the coin lands heads the stock price increases by
10% (i.e. Sn+1 = 1.1Sn), and if the coin lands tails the stock price decreases by 5% (i.e. Sn+1 = 0.95Sn). An
option pays the holder S3

N at time N = 5. Find the arbitrage free price of this option at time n = 1. Also find
the number of shares held in the replicating portfolio at time n = 0. Round your final answer two decimal places.
(I recommend rounding intermediate steps to three decimal places.)





















Problem 7.2. If 0 ⩽ r ⩽ s ⩽ t, find E(WsWt) and E(WrWsWt).







Problem 7.3. Define the processes X, Y, Z by

Xt =
Z Wt

0
e−s2

ds , Yt = exp
�Z t

0
Ws ds

�
, Zt = tX2

t

Decompose each of these processes as the sum of a martingale and a process of finite first variation. What is the
quadratic variation of each of these processes?











Problem 7.4. Define the processes X, Y by

Xt
def=

Z t

0
Ws ds , Yt

def=
Z t

0
Ws dWs .

Given 0 ⩽ s < t, compute EXt, EYt, EsXt, EsYt.





Problem 7.5. Let Mt =
Z t

0
Ws dWs. Find a function f such that

E(t) def= exp
�

Mt −
Z t

0
f(s, Ws) ds

�

is a martingale.



Problem 7.6. Suppose σ = σt is a deterministic (i.e. non-random) process, and M is a martingale such that
d[M, M ]t = σ2

t dt.

Xt =
Z t

0
σu dWu .

(1) Given λ, s, t ∈ R with 0 ⩽ s < t compute EeλMt and EseλMt−Ms

(2) If r ⩽ s compute E exp(λMr + µ(Mt − Ms)).
(3) What is the joint distribution of (Mr, Mt − Ms)?
(4) (Lévy’s criterion) If d[M, M ]t = dt, then show that M is a standard Brownian motion.



Problem 7.7. Define the process X, Y by

X =
Z t

0
s dWs , Y =

Z t

0
Ws ds .

Find a formula for EXn
t and EY n

t for any n ∈ N.













Problem 7.8. Let Mt =
Z t

0
Ws dWs. For s < t, is Mt − Ms independent of Fs? Justify.



Problem 7.9. Determine whether the following identities are true or false, and justify your answer.

(1) e2t sin(2Wt) = 2
Z t

0
e2s cos(2Ws) dWs.

(2) |Wt| =
Z t

0
sign(Ws) dWs. (Recall sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0.)







8. Black Scholes Merton equation
8.1. Market setup and assumptions.
• Cash: simple interest rate r in a bank.
• Let ∆t be small. Cn ∆t be cash in bank at time n ∆t.
• Withdraw at time n ∆t and immediately re-deposit: C(n+1)∆t = (1 + r ∆t)Cn∆t.
• Set t = n∆t, send ∆t → 0: ∂tC = rC and Ct = C0ert.
• r is called the continuously compounded interest rate.
• Alternately: If a bank pays interest rate ρ after time T , then the equivalent continuously compounded interest

rate is r = 1
T ln(1 + ρ).



• Stock price: St+∆t = (1 + r ∆t)St + noise.
▷ Variance of noise should be proportional to ∆t.
▷ Variance of noise should be proportional to St.

• St+∆t − St = rSt ∆t + σSt(∆Wt).

Definition 8.1. A Geometric Brownian motion with parameters α, σ is defined by:
dSt = αSt dt + σSt dWt .

• α: Mean return rate (or percentage drift)
• σ: volatility (or percentage volatility)



Proposition 8.2. St = S0 exp
��

α − σ2

2

�
t + σWt

�





Market Assumptions.
• 1 stock, Price St, modelled by GBM(α, σ).
• Money market: Continuously compounded interest rate r.

▷ Ct = cash at time t = C0ert. (Or ∂tCt = rCt.)
▷ Borrowing and lending rate are both r.

• Frictionless (no transaction costs)
• Liquid (fractional quantities can be traded)



8.2. The Black, Sholes, Merton equation. Consider a security that pays VT = g(ST ) at maturity time T .

Theorem 8.3. If the security can be replicated, and f = f(t, x) is a function such that the wealth of the
replicating portfolio is given by Xt = f(t, St), then:

∂tf + rx∂xf + σ2x2

2 ∂2
xf − rf = 0 x > 0, t < T ,(8.1)

f(t, 0) = g(0)e−r(T −t) t ⩽ T ,(8.2)
f(T, x) = g(x) x ⩾ 0 .(8.3)

Theorem 8.4. Conversely, if f satisfies (8.1)–(8.3) then the security can be replicated, and Xt = f(t, St) is the
wealth of the replicating portfolio at any time t ⩽ T .

Remark 8.5. Wealth of replicating portfolio equals the arbitrage free price.

Remark 8.6. g(x) = (x − K)+ is a European call with strike K and maturity T .

Remark 8.7. g(x) = (K − x)+ is a European put with strike K and maturity T .



Proposition 8.8. A standard change of variables gives an explicit solution to (8.1)–(8.3):

(8.4) f(t, x) =
Z ∞

−∞
e−rτ g

�
x exp

��
r − σ2

2

�
τ + σ

√
τ y

��e−y2/2dy√
2π

, τ = T − t .

Corollary 8.9. For European calls, g(x) = (x − K)+, and
(8.5) f(t, x) = c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))
where

(8.6) d±(τ, x) def= 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

,

and

(8.7) N(x) def= 1√
2π

Z x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.



Remark 8.10. Equation (8.1) is called a partial differential equation. In order to have a unique solution it needs:
(1) A terminal condition (this is equation (8.3)),
(2) A boundary condition at x = 0 (this is equation (8.2)),
(3) A boundary condition at infinity (not discussed yet).

▷ For put options, g(x) = (K − x)+, the boundary condition at infinity is
lim

x→∞
f(t, x) = 0 .

▷ For call options, g(x) = (x − K)+, the boundary condition at infinity is
lim

x→∞

�
f(t, x) − (x − Ke−r(T −t))

�
= 0 or f(t, x) ≈ (x − Ke−r(T −t)) as x → ∞ .



Definition 8.11. If Xt is the wealth of a self-financing portfolio then
dXt = ∆t dSt + r(Xt − ∆tSt) dt

for some adapted process ∆t (called the trading strategy).



Proof of Theorem 8.3.











Proof of Theorem 8.4.



















Proof of Theorem 8.4 (without discounting).









Remark 8.12. The arbitrage free price does not depend on the mean return rate!



Question 8.13. Consider a European call with maturity T and strike K. The payoff is VT = (ST − K)+. Our
proof shows that the arbitrage free price at time t ⩽ T is given by Vt = c(t, St), where c is defined by (8.5). The
proof uses Itô’s formula, which requires c to be twice differentiable in x; but this is clearly false at t = T . Is the
proof still correct?



Proposition 8.14 (Put call parity). Consider a European put and European call with the same strike K and
maturity T .
▷ c(t, St) = AFP of call (given by (8.5))
▷ p(t, St) = AFP of put.
Then c(t, x) − p(t, x) = x − Ke−r(T −t), and hence p(t, x) = Ke−r(T −t) − x − c(t, x).



8.3. The Greeks. Let c(t, x) be the arbitrage free price of a European call with maturity T and strike K when
the spot price is x. Recall

c(t, x) = xN(d+) − Ke−rτ N(d−) , d±
def= 1

σ
√

τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

, τ = T − t .

Definition 8.15. The delta is ∂xc.

Remark 8.16 (Delta hedging rule). ∆t = ∂xc(t, St).

Proposition 8.17. ∂xc = N(d+)





Definition 8.18. The Gamma is ∂2
xc and is given by ∂2

xc = 1
xσ

√
2πτ

exp
�−d2

+
2

�
.

Definition 8.19. The Theta is ∂tc, and is given by ∂tc = −rKe−rτ N(d−) − σx

2
√

τ
N ′(d+)



Proposition 8.20. (1) c is increasing as a function of x.
(2) c is convex as a function of x.
(3) c is decreasing as a function of t.



Remark 8.21. To properly hedge a short call, you always borrow from the bank. Moreover ∆T = 1 if ST > K,
∆T = 0 if ST < K.









Remark 8.22 (Delta neutral, Long Gamma). Say x0 is the spot price at time t.
• Short ∂xc(t, x0) shares, and buy one call option valued at c(t, x0).
• Put M = x0∂xc(t, x0) − c(t, x0) in the bank.
• What is the portfolio value when if the stock price is x (and we hold our position)?

▷ (Delta neutral) Portfolio value = c(t, x) − tangent line.
▷ (Long gamma) By convexity, portfolio value is always non-negative.





9. Multi-dimensional Itô calculus
• Let X and Y be two Itô processes.
• P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ].

Definition 9.1. The joint quadratic variation of X, Y , is defined by

[X, Y ]T = lim
∥P ∥→0

n−1X

i=0
(Xti+1 − Xti

)(Yti+1 − Yti
) ,

Remark 9.2. The joint quadratic variation is sometimes written as d[X, Y ]t = dXt dYt.



Lemma 9.3. [X, Y ]T = 1
4 ([X + Y, X + Y ]T − [X − Y, X − Y ]T )





9. Multi-dimensional Itô calculus
• Let X and Y be two Itô processes.
• P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ].

Definition 9.1. The joint quadratic variation of X, Y , is defined by

[X, Y ]T = lim
∥P ∥→0

n−1X

i=0
(Xti+1 − Xti

)(Yti+1 − Yti
) ,

Remark 9.2. The joint quadratic variation is sometimes written as d[X, Y ]t = dXt dYt.



Lemma 9.3. [X, Y ]T = 1
4 ([X + Y, X + Y ]T − [X − Y, X − Y ]T )



Proposition 9.4. Say X, Y are two semi-martingales.
• Write X = X0 + B + M , where B has bounded variation and M is a martingale.
• Write Y = Y0 + C + N , where C has bounded variation and N is a martingale.
• Then d[X, Y ]t = d[M, N ]t.

Remark 9.5. Recall, all processes are implicitly assumed to be adapted and continuous.



Corollary 9.6. If X is a semi-martingale and B has bounded variation then [X, B] = 0.



Remark 9.7 (Chain rule). If X, Y are differentiable functions of t, then
d(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) dt + ∂xf(t, Xt, Yt) dXt + ∂yf(t, Xt, Yt) dYt

Remark 9.8 (Notation). ∂tf = ∂f
∂t , ∂xf = ∂f

∂x , ∂yf = ∂f
∂y .



Theorem 9.9 (Two-dimensional Itô formula).
• Let X, Y be two processes.
• Let f = f(t, x, y) be a C1,2 function. That is:

▷ f is once differentiable in t
▷ f is twice in both x, and y.
▷ All the above partial derivatives are continuous. Then:

d(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) dt + ∂xf(t, Xt, Yt) dXt + ∂yf(t, Xt, Yt) dYt

+ 1
2∂2

xf(t, Xt, Yt) d[X, X]t + ∂2
yf(t, Xt, Yt) d[Y, Y ]t + 2∂2

yf(t, Xt, Yt) d[X, Y ]t

Remark 9.10. As with the 1D Itô, will drop the arguments (t, Xt, Yt). Remember they are there.

Remark 9.11 (Integral form of Itô’s formula).

f(T, XT , YT ) − f(0, X0, Y0) =
Z T

0
∂tf dt +

Z T

0
∂xf dXt +

Z T

0
∂yf dYt

+ 1
2

Z T

0


∂2

xf d[X, X]t + ∂2
yf d[Y, Y ]t + 2∂x∂yf d[X, Y ]t

�



Intuition behind Theorem 9.9.



Proposition 9.12 (Product rule). d(XY )t = Xt dYt + YtdXt + d[X, Y ]t





To use the multi-dimensional Itô formula, we need to compute joint quadratic variations.

Proposition 9.13. Let M, N be continuous martingales, with EM2
t < ∞ and EN2

t < ∞.
(1) MN − [M, N ] is also a continuous martingale.
(2) Conversely if MN − B is a continuous martingale for some continuous adapted, bounded variation

process B with B0 = 0, then B = [M, N ].

Proof.



Proposition 9.14. (1) (Symmetry) [X, Y ] = [Y, X]
(2) (Bi-linearity) If α ∈ R, X, Y, Z are semi-martingales, [X, Y + αZ] = [X, Y ] + α[X, Z].

Proof.



Proposition 9.15. Let M, N be two martingales, σ, τ two adapted processes.

• Let Xt =
Z t

0
σs dMs and Yt =

Z t

0
τs dNs.

• Then [X, Y ]t =
Z t

0
σs τs d[M, N ]s.

Remark 9.16. In differential form, if dXt = σt dMt and dYt = τt dNt, then d[X, Y ]t = σtτt d[M, N ]t.

Intuition.



Proposition 9.17. If M, N are continuous martingales, EM2
t < ∞, EN2

t < ∞ and M, N are independent,
then [M, N ] = 0.

Remark 9.18 (Warning). Independence implies E(MtNt) = EMtENt. But it does not imply Es(MtNt) =
EsMtEsNt. So you can’t use this to show MN is a martingale, and hence conclude [M, N ] = 0.

Correct proof.







Remark 9.19. [M, N ] = 0 does not imply M , N are independent. For example:

• Let Mt =
Z t

0
1{Ws<0} dWs

• Let Nt =
Z t

0
1{Ws⩾0} dWs



Question 9.20. Let W 1 and W 2 be two independent Brownian motions, and let W = (W 1, W 2). Define the
process X by Xt = ln(|Wt|2) = ln((W 1

t )2 + (W 2
t )2). Is X a martingale?









10. Risk Neutral Pricing
Goal.
• Consider a market with a bank and one stock.
• The interest rate Rt is some adapted process.
• The stock price satisfies dSt = αtSt dt + σtSt dWt. (Here α, σ are adapted processes).
• Find the risk neutral measure and use it to price securities.

Definition 10.1. Let Dt = exp
�

−
Z t

0
Rs ds

�
be the discount factor.

Remark 10.2. Note ∂tD = −RtDt.

Remark 10.3. Dt dollars in the bank at time 0 becomes $1 in the bank at time t.



Theorem 10.4. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
Z T

0
θt dWt − 1

2

Z T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Theorem 10.5. Any security can be replicated. If a security pays VT at time T , then the arbitrage free price at
time t is

Vt = 1
Dt

Ẽt(DT VT ) = Ẽt

�
exp

�Z T

t

−Rs ds
�

VT

�
.

Remark 10.6. We will explain the notation dP̃ = ZT dP and prove both the above theorems later.



Definition 10.7. We say P̃ is a risk neutral measure if:
(1) P̃ is equivalent to P (i.e. P̃ (A) = 0 if and only if P (A) = 0)
(2) DtSt is a P̃ martingale.

Remark 10.8. As before, if P̃ is a new measure, we use Ẽ to denote expectations with respect to P̃ and Ẽt to
denote conditional expectations.

Example 10.9. Fix T > 0. Let ZT be a FT -measurable random variable.
• Assume ZT > 0 and EZT = 1.
• Define P̃ (A) = E(ZT 1A) =

Z

A

ZT dP .

• Can check ẼX = E(ZT X). That is
Z

Ω
X dP̃ =

Z

Ω
X ZT dP .

• Notation: Write dP̃ = ZT dP .

Lemma 10.10. Let Zt = EtZT . If Xt is Ft-measurable, then ẼsX = 1
Zs

Ẽs(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem. □
Corollary 10.11. M is martingale under P̃ if and only if ZM is a martingale under P .











Theorem 10.4. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
Z T

0
θt dWt − 1

2

Z T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Theorem 10.5. Any security can be replicated. If a security pays VT at time T , then the arbitrage free price at
time t is

Vt = 1
Dt

Ẽt(DT VT ) = Ẽt

�
exp

�Z T

t

−Rs ds
�

VT

�
.

Remark 10.6. We will explain the notation dP̃ = ZT dP and prove both the above theorems later.



Definition 10.7. We say P̃ is a risk neutral measure if:
(1) P̃ is equivalent to P (i.e. P̃ (A) = 0 if and only if P (A) = 0)
(2) DtSt is a P̃ martingale.

Remark 10.8. As before, if P̃ is a new measure, we use Ẽ to denote expectations with respect to P̃ and Ẽt to
denote conditional expectations.

Example 10.9. Fix T > 0. Let ZT be a FT -measurable random variable.
• Assume ZT > 0 and EZT = 1.
• Define P̃ (A) = E(ZT 1A) =

Z

A

ZT dP .

• Can check ẼX = E(ZT X). That is
Z

Ω
X dP̃ =

Z

Ω
X ZT dP .

• Notation: Write dP̃ = ZT dP .

Lemma 10.10. Let Zt = EtZT . If Xt is Ft-measurable, then ẼsXt = 1
Zs

Es(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem. □
Corollary 10.11. M is martingale under P̃ if and only if ZM is a martingale under P .





Theorem 10.12 (Cameron, Martin, Girsanov). Fix T > 0 and let b be an adapted process.

• Define W̃t = Wt +
Z t

0
bs ds (i.e. dW̃t = bt dt + dW̃t).

• dP̃ = ZT dP , where Zt = exp
�

−
Z t

0
bs dWs − 1

2

Z t

0
|bs|2 ds

�
.

If Z is a martingale, then P̃ is an equivalent measure under which W̃ is a Brownian motion up to time T .



Proposition 10.13. dZt = −Ztbt · dWt.

Question 10.14. Looks like Z is a martingale. Why did we assume it in Theorem 10.12?







Idea behind the proof of Theorem 10.12.







Theorem (Theorem 10.4). The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
Z T

0
θt dWt − 1

2

Z T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Proof of Theorem 10.4.







Theorem 10.15. Xt represents the wealth of a self-financing portfolio if and only if DtXt is a P̃ martingale.

Remark 10.16. The proof of the backward direction requires the martingale representation theorem, and is
outlined on your homework.

Remark 10.17. This is the analog of Theorem 4.57

Proof of the forward direction.







Theorem (Theorem 10.5). Any security can be replicated. If a security pays VT at time T , then the arbitrage
free price at time t is

Vt = 1
Dt

Ẽt(DT VT ) = Ẽt

�
exp

�Z T

t

−Rs ds
�

VT )
�

.

Remark 10.18. This is the analog of Proposition 4.1.

Proof of Theorem 10.5.





11. Black Scholes Formula revisited
• Suppose the interest rate Rt = r (is constant in time).
• Suppose the price of the stock is a GBM(α, σ) (both α, σ are constant in time).

Theorem 11.1. Consider a security that pays VT = g(ST ) at maturity time T . The arbitrage free price of this
security at any time t ⩽ T is given by f(t, St), where

f(t, x) =
Z ∞

−∞
e−rτ g

�
x exp

��
r − σ2

2

�
τ + σ

√
τ y

��e−y2/2dy√
2π

, τ = T − t .(8.4)

Remark 11.2. This proves Proposition 8.8.







Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a European call with strike K and maturity
T is given by:

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))(8.5)
where

d±(τ, x) def= 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

,(8.6)

and

(8.7) N(x) def= 1√
2π

Z x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.

Remark 11.4. This proves Corollary 8.9.









12. Review problems
Problem 12.1. Consider a financial market consisting of a risky asset and a money market account. Suppose the
return rate on the money market account is r, and the price of the risky asset, denoted by S, is a geometric
Brownian motion with mean return rate α and volatility σ. Here r, α and σ are all deterministic constants.
Compute the arbitrage free price of derivative security that pays

VT = 1
T

Z T

0
St dt

at maturity T . Also compute the trading strategy in the replicating portfolio.



















Problem 12.2. Let X ∼ N(0, 1), and a, α, β ∈ R. Define a new measure P̃ by
dP̃ = exp


αX + β

�
dP .

Find α, β such that X + a ∼ N(0, 1) under P̃ .





Problem 12.3. Let f be a deterministic function, and define

Xt
def=

Z t

0
f(s)Ws ds .

Find the distribution of X.







Problem 12.4. Let x0, µ, θ, σ ∈ R, and suppose X is an Itô process that satisfies
dX(t) = θ(µ − Xt) dt + σ dWt ,

with X0 = x0.
(a) Find functions f = f(t) and g = g(s, t) such that

X(t) = f(t) +
Z t

0
g(s, t) dWs .

The functions f, g may depend on the parameters x0, θ, µ and σ, but should not depend on X.
(b) Compute EXt and cov(Xs, Xt) explicitly.









Problem 12.5. Let W be a Brownian motion, and define

Bt =
Z t

0
sign(Ws) dWs .

(a) Show that B is a Brownian motion.
(b) Is there an adapted process σ such that

Wt =
Z t

0
σs dBs ?

If yes, find it. If no, explain why.
(c) Compute the joint quadratic variation [B, W ].
(d) Are B and W uncorrelated? Are they independent? Justify.













Problem 12.6. Suppose σ, τ, ρ are three deterministic functions and M and N are two continuous martingales
with respect to a common filtration {Ft} such that M0 = N0 = 0, and

d[M, M ]t = σt dt , d[N, N ]t = τt dt , and d[M, N ]t = ρt dt .

(a) Compute the joint moment generating function E exp(λM(t) + µN(t)).
(b) (Lévy’s criterion) If σ = τ = 1 and ρ = 0, show that (M, N) is a two dimensional Brownian motion.



Problem 12.7. Let W be a Brownian motion. Does there exist an equivalent measure P̃ under which the process
tWt is a Brownian motion? Prove it.



Problem 12.8. Let θ ∈ R and define
Zt = exp

�
θWt − θ2t

2

�
.

Given 0 ⩽ s < t, and a function f , find a function such that
Esf(Zt) = g(Zs) .

Your formula for the function g can involve f , s, t and integrals, but not the process Z or expectations.



Problem 12.9. Consider the N period Binomial model with N = 5, and parameters 0 < d < 1 + r < u. At
maturity N = 5, a security pays $1 if S5 > (1 + r)S4, and 0 otherwise. Find the arbitrage free price and trading
strategy trading at time 0.


