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2. Syllabus Overview

mu.edu/~gautam/sj/teaching/2022-23/944-scalc-fine

One homework assignments turnéd in 24h late without penalty.
Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines,
etc.).
> Collaboration is encouraged. Homework is not a test — ensure you learn from doing the homework.
> You must write solutions independently, and can only turn in solutions you fully understand.
e Academic Integrity
> Zero tolerance for violations (automatic R).
> Violations include:
— Not writing up solutions independently and/or plagiarizing solutions
— Turning in solutions you do not understand.
— Seeking, receiving or providing assistance during an exam.
> All violaki i reported to iversity, and they may impose additional penalties.
o Grading: |10% homework, [30% midterm| 60% final.
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Course Outline.

e Review of Fundamentals:| Replication, |arbitrage free pricing.
e Quick study of the multi-period binomial model.

> Simple example of replication / arbitrage free-pricing.

> Understan itional expectations. |(Have an explicit formula.)
> Understand measurablity / adaptedness. (Can be stated easily in terms of coin tosses that have / have not
occurred.)

tand risk neutral measures. Explicit formula!
Develop tools to price securities in continuous tim
rownian motion oin tosses)

> Conditional expectation: No explicit formula!

> Itd formula: main tool used for computation. Develop some intuition.

> Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need

a working knowledge.
> Derive and understand the Black-Scholes formula.



3. Replication and Arbitrage
TEREReR L e

3.1. Replication and arbitrage free pricing.
o Start with a financial market consisting of traded assets (stocks, bonds, money market, options, etc.)

« We el the price of these assets through random variables (stochastic processes).
¢| No Arbitrage Assumption:

er to make money, you have to take risk. (Can’t make something out of nothing.)
> Mathematically: For any trading strategy such that (Xo = 0,{and X,, > 0, you must also have X,, =0
almost surely. -

> Equivalently: There doesn’t exist a trading strategy with Xo =0, X,, > 0 and P(X,, > 0) > 0.
/\—\_/—\ -
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e |Arbitrage free price

> —traded asset Y (e.g. an option). How do you price it?
> (Arbitrage free price:\If given the opportunity to trade Y at price Vj, the market remains arbitrage free,

then we say Vj is the arbitrage free price of Y.
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> We wi t always find the arbitrage free price by
> Say the non-traded asset pays Vy at time IV (e.g. call’options).
> Try and replicate the payoff:
— Start withdollars. =
— Use only traded assets and ensure that at maturityX N

> Then the s uniquely determined, atrd mmtst
(f\iemark 3.1. The arbitrage free price is unique|if and only if there is a replicating strategy! In this case, the

arbitrage free price is exactly the initial capital-bf-the Teplicating strategy.
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3.2. Example: One period Binomial model.
o Consider a market with and money market account.
o Interest rate for borrowing and lendihg is ransaction costs. Can buy and sell fractional quantities of

the stock.
. m Flip a coin that lands heads with probability i € (0,1) and tails with probability
1—pq. S1 = uSy if heads, and S; = dSj if tails.

5 So m price at time 0 (known).
> S is stock price after one time period (random).
> u,d are model parameters (pre-supposed). Called the )1p and down factors.

(Will always assume 0 < d < u.)
’—\_

Proposition 3.2. There’s no arbitrage in this model if and only if d < 1 +1r < u.

Proof. % = L g
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Proposition 3.3. Say a security pays@t time 1 (Vi can depend on whether the coin flip is heads or tails).
The arbitrage free price at time 0 is given by

1 -
H —_ =
Y_g s ( p1Vi(H) + @ Vi(T )) | : V where| pq ”
" ) Vi(T) :
The replicating strategy holds ) e shares of stock at time 0.
0

Proof.
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4. (Multi-Period Binomial Model.

e Same setup as the one period case 0 < d a< 1\+;< A and that land heads with probability P and
tails with probability g;.

o Except now the security matures at tim

e Stock price: Sy, 11 = uS, if n 4 fFth coinYoss1s heads, and S, 1 = dS otherwise.

e To replicate 1t>°§ecur1ty, we start with capital

e Buy AO shares of stock, and put the rest in cash.

o Get X1 AopS1 + Qﬁ‘l Xo — AOSB;..'/

Repeat. Self Fir ondition: P(nﬂ A,S nt1 + (L+r)(Xn—A S’_\ L

aptedness: A,, can only depehd Ol Outeomes of o




Proposition 4.1. Consider a security that pays Vi _at time N.

-~ " (1 + T)an, N n (u — d)Sn .

o V, is the arbitrage free price at timen < N.
e A, is the number of shares held in the replicating portfolio at time n (trading strategy).

Question 4.2. Why does this work?
Question 4.3. What is E, ? (It’s different from E, and different from E,,).
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4.1. Quick review probability (finite Sample spaces). This is just a quick review for you to fix notation.
You should already be familiar with this material from previous courses, and we won’t go over it in class. We
will, however, spend some time studying conditional expectation. {/}/L

Let N € N be large (typically the maturity time of financial securities). OI

Definition 4.4. The[sample spacd is the set Q = {(w1,...,wn) | each w; represents the outcome of a coin toss}.
_— =

> E.g. w; € {H,T}, or w; € {£1}. (Each w; could also represent the outcome of the roll of a M sided die.)

Definition 4.5. A sample point is a point w = (w1,...,wy) € Q.

> Each sample point represents the outcome of a sequence of all coin tosses from 1 to N.

Definition 4.6. A probability mass function (PMF for short) is a function p: aQé_—> [0, 1] such that )~ o p(w) = 1.
_— — ——

Example 4.7. Typical example: Fix p; € (0,1), 1 = 1 —p; and set p(w) = p{{(w)qlT(w). Here H(w) is the number
of heads in the sequence w = (w1, ...,wy), and T'(w) is the number of tails.

Definition 4.8. An event is a subset of . Define P(A) =" ., p(w).
> P is called the probability measure associated with the PMF p.
Ezample 4.9. A{w € Q|w; = +1}. Check P(A) = ps.

4.2. Random Variables and Independence.

Definition 4.10. A random variable is a function X : Q — R.



2 is a random variable corresponding to the outcome of the second coin

Ezample 4.11. X (w) = { ) )
- wy = —1,

toss.

Definition 4.12. The ezpectation of a random variable X is EX =) X (w)p(w).

Remark 4.13. Note if Range(X) = {z1,...,2,}, then EX =Y X(w)p(w) = Y7 @;P(X = x;).

Definition 4.14. The variance of a random variable is Var(X) = E(X — EX)%.

Remark 4.15. Note Var(X) = EX? — (EX)?.

Definition 4.16. Two events are independent if P(AN B) = P(A)P(B).

Definition 4.17. The events A, ..., A, are independent if for any sub-collection A4;,, ..., A;, we have
P(A;, NAj, N---NA;,) = P(Ay )P(Ay,) - P(A;,) .

Remark 4.18. When n > 2, it is not enough to only require P(A; N Ay N---NA,) = P(A;)P(A2)--- P(A,)

Definition 4.19. Two random variables are independent if P(X =z, Y =y) = P(X = z)P(Y = y) for all
z,y € R.

Definition 4.20. The random variables X, ..., X,, are independent if for all z4,...,z, € R we have
P(Xl =T, X2 :xz,...,Xn Z.%‘n) :P(Xl Z.%‘l)P(XQ = mg)P(Xn = l‘n)

Remark 4.21. Independent random variables are uncorrelated, but not vice versa.
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Definition 4.22. We define a filtration on € as follows:
> JFo = {0,0}.
> F; = all events that can be described by lonly the first coin toss| E.g. A = {w |w; = +1} € F.
> F5 = all events that can be described by only the first two coin toss. —
TEg A={w|w = +1} € o, B={w|wi = +1,ws = 1} € Fa.
> F,, = all events that can be described by only the Hrst n coin tosses.
- Eg A={w|w =1lws =—-1,w, =1} € F,.
Remark 4.23. Note {0,Q} =Fy C F, C--- C Fy =P(Q).

Remark 4.24. If A, B € F,,, then so do A, B, AnNB, AUB, A— B, B— A.

- — )
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Definition 4.25. Let n € {0,...,N}. We say a random variable X is E -measurable ?f & 20n1y depends on
Wiy ooy Wp.

mntlyQMny B CE tﬁj “’éﬁ)ex}t(fo EB} e J-“ >

Remark 4.26 (Use in Flnance). For every n, n, the tradmg strategy at time n (denoted by A,) must be F,
measurable. We can not trade today based on tomorrows price.

FEzample 4.27. If we represent 2 as a tree, F,, measurablity can be visualized by checking constancy on leaves.
—_—



4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n N. We define E(X | Fn) = E X to be the random
Ugr@g given by -

)E X (w) = Z z; P(X —xl|H & WIAC,

zIGRange(X
where I,(w) ={w' €Qw) =wi, ...,w, =w,} & g

Remark 4.29. The above formula does not generalize well to infinite probability spaces. We will develop certain
properties of E,,, and then only use those properties going forward.

Ezample 4.30. If we represent (2 as a tree, E, X can be computed by averaging over leaves.

Remark 4.31 is the “best approximation” of X given only the first n coin tosses.
EL =2 1 P(K= v
( b
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Proposition 4.32. The conditional expectation| E, X (defined by the above formula satisfies the following two
: rdrtonat erpectatig
properties:
—)(1) E,X is an F,-measurable random Variable
(2) For every A € F,, E,X(w X(w
AR 5>

weA w€eA

Remark 4.33. This property is used to define ¢o ations in the continuous time setting. It turns
out that there is exactly one random variable that satisfies both the above properties; and thus we define E, X
to be the unique random variable which satisfies both the above properties.

Remark 4.34. Note, choosing A =, we see E(E,X) = EX.

[Tt )] hyowt 4 1-212 1000

Ol Lok

g e |2 IR




Proposition 4.35. (1) If X, Y are two random variables and o € R, then |E, (X + oY) = E, X + aE,Y.

(2) Tower propert Ifm <n, then E(E,X)=FE_,X. I%\
(3)If X is Fy andY is any random variable, |then E,(XY) = XE,Y.

)ﬂ % %}y\/ Wme,



Proposition 4.36. (1) If X is measurable with respect to F, then E, X = X.
(2) If X is independent of F,, then E,X = EX.

Remark 4.37. We say X is independent of F,, if for every A € F,, and B C R, the events A and {X € B} are
independent.

Ezxample 4.38. If X only depends on the (n 4 1), (n +2)™ ... n'" coin tosses and not the 15¢, 274 ... nth
coin tosses, then X is independent of F,.



Proposition 4.39 (Independence lemma). If X is independent of F,, and Y is F,-measurable, and f: R — R
s a function then

m

E,.f(X,)Y)= Zf(xi7Y)P(X =), where {x1,...,xm} = X(Q).
i=1
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4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n < N. We define E(X | F,,) = E, X to be the random
variable given by -  —

z;€Range(X) N

Remark 4.29. The above formula does not generalize well to infinite probability spaces. We wiN develop d

properties of E,,, and then only use those properties going forward.

Ezample 4.30. If we represent (2 as a tree, E, X can be computed by averaging over leaves.

Remark 4.31. E, X is the “best approximation” of X given only the first n coin tosses.

EX = 2 xP-7)
I iy




Proposition 4.32. The conditional expectation|E, X |defined by the above formula satisfies the following two
properties:

(1) E,X is an ]-“ -measurable random Variable

(2) For everyAE]-"n, ZE X(w ZX -
WEA wEA ¢

Remark 4.33. This property is used to define conditional expectations in the continuous time setting. It turns
out that there is exactly one random variable that satisfies both the above properties; and thus we define E, X
to be the unique random variable which satisfies both the above properties.

Remark 4.34. Note, choosmg\A Q, we see E E X) @




Proposition 4.35. (1) If X, Y are two random variables and o € R, then E, (X + oY) = E, X + oE,Y.

2) (Tower property) If m < n, then E,,(E,X) =FE,,X. I'—
C?) If is Fpyneasurable, and Y Y is any random variable, then E,(XY)=XE,Y.
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Proposition 4.36. IfX 18 me»%@spect to ]—'n, then \E X=X. S

If)C- is independent of F,, then|E, X = EX
emark 4 37. We say X is independent of F,, if for every @nd the events A and
ndependent.

zample 4.38. If X only depends on the (n + 1) (n + 2)*
coin tosses, then X is independent of F,,.

Prem-qaest | ) et



Proposition 4.39 ( Independence lemma). @s independent of Fy, and@ Fn-measurable, and f: %
s a function then

Ef%YfoY (X =) where {x1,...,xm} = X(Q).
i=1

£, ~ o




4.5. Martingales.

Definition 4.40. A stochastic process is a collection of random variables Xg, X1, ..., Xn.
- =
FEzample 4.41. Typicall is the wealth of an investor at time n, o the price of a stock at time n.
Definition 4.42. A stochastic process is|\adapted \if X,, is F,,-measurable for all n. (Non-anticipating.)
= —

Remark 4.43. Requiring processes to be adapted is fundamental to Finance. Intuitively, being adapted forbids

you from trading today based on tomorrows stock price. All processes we consider (prices, wealth, trading

strategies) will be adapted.

Ezample 4.44 (Money market). Let Yy = Yo(w) = a € R. Define Yy, 1 = (1 +1)Y,. (Here r is the interest rate.)
I = = = —_— -

e
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Definition 4.46. We say an adapted process M, is a martingale if E, M, 11 = M,,. (Recall E,,)Y = E(Y | F,,).)
—_— —_— _~—_ =

Remark 4.47. Intuition: A martingale is a “fair game”.

— T e
Ezample 4.48 (Unbiased random walk). If wré 1.i.d. and mean zero, then )&l =3 i is a martingale.

X =0

%((}Xo{—%i
A< XQJriZ
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Remark 4.49. If M is a martingale, then for every m < n, we must have

emark 4.50. If M is a martingale then|E M,







4.6. Change of measure.

e Gambling in a Casino: If it’s a martingale, then on average you won’t make or lose money.
e Stock market: Bank always pays interest! Not looking for a “break even” strategy.
o Mathematical tool that helps us price securities: Find a \Risk Neutral Measure.

> Discounted stock price is (usually) not a martingale.
> Invent a|“risk as hich the discounted stock price is a martingale.
> Securities can be priced by taking a conditional expectation with respect to the risk neutral measure. (That’s

the meaning of E,, in Proposition 4.1.)
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Definition 4.51. Let D,, = (1 + r)~™ be the discount factor. (So D,$ in the bank at time 0 becomes 1$ in the
bank at time n.) -

e Invent a new probability mass function{'
o Use a tilde to distinguish between the new, invented, probabﬂlty measure and the old one.
> P the probability measure obtained from the PMF p (i.e. P( (4) = ZwGAU

> E E,, conditional expectation with respect to P (the new “risk neutral” coin)

Deﬁnltlon 4.52. We say P and P are equivalent if for every A € Fy, P(A) = 0 if and only if P(A) =
—_—— —— B — —_—
Definition 4.53. A(Ws an equivalent measure P under which D,,S,, is a martingale. (I.e
p ——— —— - ———
E/‘{(Dn+15n+l) = DnSn-) .
Remark 4.54. If there are more than one risky assets, S', ..., S, then we require D,S}, ..., D,S* to all be
—_— -

martingales under the risk neutral measure P.

Remark 4 55. Propesition 4.1 says that any security with payoff Viy_at time N has arbitrage free price
t time n. (Called the risk neutral pricing formula.)




Proposition 4.56. Let P be an equivalent measure under which the coins are i.i.d. and land heads with
probability p1 and tails with probability G = 1 — py.

(1) Under P, we have E, (D n+1sn+1)_p1u+q1dD S,,.
s the risk neutral measure if and only 1 p1u+q1 = +r Tp zcztypl %, an g1 =
2) P is the risk l if and only if d=1 Erplicitl I u(1+r)
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Theorem 4.57. Let X,, represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio zf
and only if the discounted wealth D, X, is a martingale under the risk neutral measure P
—_—

—_—

Remark 4.58. Recall a portfolio is self financing if X,11 = AnSpt1 + (14 r)(X,, — A, S,) for some [adapted
process A,,. —_—— == T = _= L’g‘i

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t look into the future.
(2) All replication has to be done using self-financing portfolios.
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Fobm
é[ﬁeoré&m 4.57. Let X,, represent the wealth of a portfolio at time n. The portfolio zs@portfolw if
and only if the discounted wealth D Xn is a martingale under the risk neutral measure P.

—

Xnt1 = AnSntr + (L4 7)(Xn — AnSh)

—_ e

for some adapted
—_—

Remark 4.58. Recall a portfolio is self financing i
process A,,.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t look into the future.
(2) All replication has to be done using self-financing portfolios.
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Ezxample 4.59. Consider two stocks /Sql and g, u=2,d f_l&

> The coin flips for S* are heads with probability Q;QZ'Q, and tails with probability 10%.
> The coin flips for E\;are heads with probability g_%, and tails with probability 1%.

> Which stock do you like more?
> Amongst a call option for the two stocks with Strik@nd maturity@which one will be priced higher?

!
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Remark 4.60. Even though the stock pﬂ&c_d/namgewm a coin that flips heads with probability pq,
the arw

e is computed using conditional expectations using the msk neutral probability] So when

computing E, Vywe use our new 1nvented ‘risk neutral” coin, that, flips he ds Wlth probabilit and tails

with probability )i
Concepts that will be generali Ld to ¢ Ltlnuous time. /7/\\

¢ Probability measure: Lebesgue integral, and not a finite sum. Same propertles.
o Filtration: Same intuition. No easy description.

o Conditional expectation: Same propexties, no formula.
« Riskmeutral measure: Formula fo

: complicated (Girsanov theorem.)
——
o Everything still works because of of Theore Understanding why is harder.

z
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5. Stochastic Processes

5.1. Brownian motion. /\([M @L > = L %A

« Discrete time: Simple Random Walk.
l>he¥§i’s are i.i.d@d&&mge(&) = {£1}.
o Continuoustime: Brownian motiort: —
>Y; =X+ (t—n)pift€n,n+1).
> Rescale: Y7 = \/eY;/.. (Chose /€ factor to ensure Var(Yy) ~t.)
! L“\WE Z% Yf’ ) " Weppor Vrouss

Definition 5.1 (Brownian motion). The procesé@ove is called a Brownian motion.
.

> Named after Robert Brown (a botanist).
> Definition is intuitive, but not as convenient to work with.

R0 Do o K oy e RV [B
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o If ¢, s are multiples of g \/‘ Z 13 e—0 ( 0 = s).
. nly uses coin tosses that are after s”, and so independent 0@
Deﬁmtl wﬁw E 2
W NOt—s &f' :D) gf/‘/l
( ) 177[— W, is 1ndependent ’\) ]
| ~ N =@
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5.2. Sample space, measure, and filtration.
o Discrete time: Sample space Q = {(w1,...,wx) | w; represents the outcome of the i*® coin toss}.
e View (wq,...,wn) as the traj%’étory of & tandom walk. =
. [Continuous time: |Sample space 2 :(space of continuous functions).
> It’s infinite."INO probability mass function!
> Mathematically impossible to deﬁneiP@ for all A C ).
T~




¢ Restrict our attention to G, a subset of some sets A C €2, on Whic@an be defined.
> G is a o-algebra. (Clos?[_'countable under unions, complements, infersections.)

. called a probability measure on (£2,G) if:
> P: G —[0,1], E@: 0, P() =1.
> P(AUB) = P(A)+ P(B) if A, B € G are disjoint.

> 1 4, € G, P({JAn) = lim P(4,). QZ AWL C Afvbrl >

e Random variables are|measurable functions jpf the sample space:
> Require {X € A} €G for every “mice” A C R.

7
Eg {X=1}€G, {X >5}€G,{X €[3,4)} €G, etc. e
ERegcau{XeA}:{wemX(w)eAit.—/\ Le K > 0.
¢

Fosl ——= K 0] ~ljw| (>4
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o Expectation is a Lebesgue Integral: Notation EX / X dP / )ﬂ/ dP

> N mple formula.
ZallA,thenEX Zaz 1 ZQ %—»A)
1 weA
. wvea

> 14 is the indicat tion of A: 1 =
a is the indicator function of A: 1a(w) =4 " T-0)

D{ém/&k’



Proposition 5.3 (Useful properties of expectation). 09 F MN& {L '

(1) (Linearity)|a, 5 € R| X, Y random variables, EM =aEX + BEY.
(2) (P((m;) IfFx> O then EX >0, If X > 0 and EX =0 then X = 0 almost surely.
M Nl

%(Layer Cake) IfX >0, EX —/ P(X >1t)dt.

More generally, if ¢ is increasing, ©(0) = 0 then Ep(X / P(X >t)dt.
g v, if ¢ is increasing p(0)=0 pX) = | ¢t PX>1)dt

@S‘cahsmman Formula) If PDF of X “'then Ef / f(z ‘)
% KD we o P()x;@cg,
Ue/ = O{thu N L<
TEAK ek, b B gt b
KR




o Filtrations:

v

Continuous time;

It <T) A C R

Discrete time: Foy = {

]

%WH[ = KM ko, (im = blemq | )

Discrete time: JF,, = events described using the ﬁrst
Coin tosses doesn’

> t tran:
> Discrete time try #2: F,, = events described using the trajectory of the SRW \up to time n.
> é: >

> n

>

>

nslate well to continuous time. _

“events described using the Wf the Brownian motion up to time ¢.

(W, € Ay, Wy, € Ay} € Fy. (Need all t; < 1)

A fe: if s < t, then Fs C F;.

*’J‘ﬁ?mous fme: Fo ={A € G| P(A) €{0,1}}.

f.

CoIm %ﬁ%

- E\;}f Qﬂ éaja‘

> e &
W&YU o[ & x\))ﬁ@ge

&

—






5.3. Conditional expectation.

« Notation|Ey(X)/= E(X | F¢) (read as conditional expectation of X given F3)
e No formu a' But same inttition as dlscrete time.

o E, X (w)= “average of X over II;(w)”, where II;(w) = {0’ € Q| w'(s) = w(s) Vs < t}.
+ Mathematically problematic: P(II;(w)) = 0 (but it still works out.)

ELK
é/@/\ﬁ oy @a mm)oﬂé\ T{t‘/




(Definition 5.4. EtX is the unlqu@such that:
(1) E X is Fi- —measurable
—_——

(2) For every A € J-"t, / E,XdP = / XdpP

/'_—/M-
Remark 5.5. Choosing A = Q) implies E(E:X) = EX.

Proposition 5.6 (Useful properties of conditional expectation).

(1) If o, B € R are constants, X,Y, random vamablesm)( + pY) = aE X + SEY
(2) IfX >0, then E,X > 0. Equality holds if and only if X =0 almost surely. —

(3) (Tower propertym s < t, then Ey(EX) = EX.

(4) If X is F; measurable, and Y is any ‘random varm then’Ey(XY) = X E,Y .
(5) If X is F; measurable, then ExX = X (fotlqws by choosing Y =1 above)
(6) If Y is independent of Fy, then ELX =

Remark 5.7. These properties are exactly the same as in discrete time.



Lemma 5.8 (Independence Lemma). If X is F; measurable, Y is independent of Fy, and f = f(m,g) R? - R

is any function, then —
E, f(X,)Y)= g(X) , where gy E Xy

Remark 5.9. If@ is the PDF of Y, then E;f(X,Y) = / F(X,y)py (y) dy.
o R P

—_— =

i = EJ@@D

=1
/
7




5.4. Martingales.
Definition 5.10. An adapted process M is a martingale if for every 0 < s < ¢, we have E;,M; = M.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information available today
will not change your expected return.



Proposition 5.12. Brownian motion is a martingale.

Proof.
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5.4. Martingales.
Definition 5.11. An adapted process M is a martingale if for every 0 < s <t we have E,M; =\M,

Remark 5.12. As with discrete time, a martingale is a fair game: stopping based on information available today
will not change your expected return.

O'\%i J(W“ EM MMH b M%




Proposition 5.13. Brownian motion is a martingale.
i

Proof. MM L) ém E N _ [,O

S 4 5
e, =B (10~ wo) Qw )4 B0,
Ly
%Q/WKQ/L\(G

><E( B
c/)%f) "
0 = W,



6. Stochastic Integration
-— — m . .
fouk

6.1. Motivation. Z)/ o - ) %{ “{‘ﬁ\t—ﬁ
e Hold b; shares of a stock with price S
by St O L /b; /L T ’(/;

¢ Only Trade at times P 0=t <. =T [
{ ' n—l} (b A /"(/] 4/\.,
o Net gain/loss from changes in stock price: Z b, AgS, where AgS = Stk“ — S -
k=0 \’_‘

e Trade continuously in time. Expect net galn/ loss to be lim Z by, ApS = / by dS;.
IIP =0+ =

> [Pl = maxy(te+1 — tr). %ZQ 4% P S

> Riemann-Stieltjes integral: ‘h”m Z be, AkS / by dSy,
e
> The §k € [tk,tk_H can be chosen ar 1trar11y

> Only works if the ﬁrst variatio o is finite. False for most stochastic processes.

s i)

/



Definition 6.1. For any process X, define th

6.2. First Variation. WW
Jrov w0 ?

n—1 n—1
Vo1 (X) & i ARX|E i Xo o — X, |,
on)(X) |\P1\|H—I>OI;)|J\_J| ||Pl||n[—1>ok§::0| i = Xul

Remark 6.2. If X 1t) is a differentiable function of ¢ then M< 00.
roposition 6.3. EVjy W = oo
- AN B _

Remark 6.4. In fact, Vi 7jW = oo almost surely. Brownian motion does not have finite first variation.

Remark 6.5. The Riemann-Stieltjes integral fOT bs AWy does not exist. AMN = W

—>E W= b £ |40

il 17(->0

Q(iﬁ P — QW@W\\\ : " {

Lar(/ %/@









s e L=l 2 1 )

Definition 6.6. If M is a continuous tmﬂf dapted process, define R ’(7[/\
n—1
M, M]r = i M, ., —M,)*= 1l ARM)?.
[ ki ]T HPIHIEO kZ:O( M tht1 rtk) ”PII|II—1>0kZ:0( ”k__\;)
roposition 6.7. For continuous processes the following hold:

—=¥1) Finite first variation implies the uadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.
[ R}

ﬁﬁ Rowid e alo (TW{M‘M}>



Proposition 6.8. [W,W]r =T almost surely.

Remark 6.9. For use in the proof: Var(N(0,02)?) = EN(0,0%)* — (EN(0,02)?)? = 257 Zt
- = —_— - ==

Proof:. \C

2rt — ¥
&U\)) V\)lR = L‘W Z Céﬂ)\))z’ Aéy/m ,(WW %@él,
(=
NS — 7 a.g, N













Proposition 6.10. W2 — [W, W], is a martingale.

@9 WOI) b w - byl
LU ww}> e %>
: g% !

=t QA)’MHWZ -4
KW = Ny) ML*QW& W?’%







Theorem 6.11. Let grl)e a continuous martingale.
(1) EM}? < oo if and only if E[M,M]; < .
(2) In this case M7 — [M, M), is a continuous martingale.
(37 Conversely, if M? — A; is a martingale for any continuous, increasing process A such that Ay = 0, then
M we must have A; = [M, M];. i

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.



Remark 6.13. If X has finite first variation, then |X;; 5 — X;| = O(dt).
——_————— ~ —
Remark 6.14. If X has finite quadratic variation, then | X; 5 — X;| &= O(Vdt) > O(6¢t).

=

"




6.4. It6 Integrals.

» D; = D(t) some adapted process (position on an asset). H—\'_'\—_’hv:‘

e« P={0=tg <ty <---} increasing sequence of times. D L L . 1 ’T“
. HP” = max; ti+1 — ti, and AiX = Xti+1 — th.. | 2 %V‘
e W : standard Brownian motion.

n—l T (A q/‘ /A AN
o Ip(T) d:efZ—i—Dtn(WT—th) 4 <l> — _LJ[D M,
i=0 - N
Definition 6.15. The [t6 Integral 01th respect to Brownlan motion is defined by

Remark 6.16. Suppose for simplicity 7= tn. /]} ) ,t
W exists, for any &; € [t ti11]. /lt - {)/{H

he limit to exist.
j’\

=

(1) Riemann integrals: lim
lPl—0

(2) Tto integrals: Need &; = t; for




T
Theorem 6.17. Ifmm., then: g) :D: OM/ - )2 141%
0 =

(1) It = lim Ip(T) exists a.s., and EI(T)? < cc.

[|P|| =0 —= —

t s
(2) The process It is a martingale: Ely = Eg | D, dW, / D, dW, = I
= = 0

0 —— r—

@ 1= [ DRt as

——

T
Remark 6.18. If we only had / D?dt < oo ass., then I(T) = |\119i\|m OIP(T) still exists, and is finite a.s. But it
0 —

may not be a martingale (it’s a local martingale).

/r

L= g
0



T T

Corollary 6.19 (It6 isometry). E( / D dW) =F / D} dt
0 , 0o -

Proof. I N
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T
Theorem 6.17. If / D7 dt < oo|dLgy, then:

(1) Ir = lim Ip(T) exists a.s., and EI(T)? < c0.
= IPI=20 ==
—
(2) The process IT is a martingale: E Iy = E D dW = / D, dW, = I
’N—éj O =

(3) [I,1]r :/ D} dt a.s.
—_— 0o —

T
Remark 6.18. If we only had / D?dt < oo ass., then I(T) = |\119i\|m OIP(T) still exists, and is finite a.s. But it
—

0
may not be a martingale (it’s a local martingale).
TS S



Corollary 6.19 (Itd isometry). /DdW E/ D2 dt

Proof.

AMW@ ﬂ%d TRk
b, BX fﬁ@} W(@Q>
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Proposition 6.20. If% aeR, D D adapted processes ( 0(_ & LQW@}OW )4/\&7‘ WJ@M)

T
mD +aD,) dW, —\_/ D, dWy +a/ D, dW,
0
T
Proposition 6.21. / Dy dW, +/ DgdWy —— S D &M’)

Question 6.22. IfD >0, then must fo Dy dW; > 07

i
By D=4 %;MKM.

o &TL by, = W /)/%/Z anld b 20,



Remark 6.23. (1) For Riemann-Sticltjes ntglw DJc g{%@b

(2) For Ito ntgl—/DdW typically does not exist.

— <\§ % %> Hﬁ
( \fb> DNk @5 DW Nﬂﬂ%@



6.5. Semi-martingales and It6 Processes.

t
Question 6.24. What is / WsdW,?
0



Definition 6.25. A semi-martingale is a process of the form X = Xo + B + M where:

> Xg is Fp-measurable (typically X, is constant).
> B is an adapted process with finite first variation (aka bounded variation).
> M is a martingale. S

/—\/—5
Definition 6.26. An [{6- process is a semi-martingale X = Xo + B B+ M where:

I>Bt /bds w1th/|b\ds<ooé\ (AQQ/VW/IM’ Vl/\*>

> Mt—/ s AW, Wlth/|05|2d8<00 e— 4[,71.9 ‘“/\i-’
0 0

~

Remark 6.27. Short hand notation for Itd processes: dXt =bydt + oy th.

Remark 6.28. Expressing X = Xo+ B + M (or dX = bdt +o dW) is called the semi-martingale decomposition
or the Ito decomposition of X. JG —

3
%%’: R+ SE&@ t Q; OMA)%
0







CZMWL Wvl!),v QU‘ .

1
(t, Xt)ilét + iaif(thL) d[X, X1

—

Theorem 6.29 (It6 formula). If f € C12
df (t, Xy) = 0 f(t, Xy) dt +10. f
;2 = ~

Remark 6.30. This is the main tool we will use
understanding all the notions involved.

J[%LML%& M/L Wiy JMW «w/t& T W{jw

oing forward. We will return/fand study it thoroughly after
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Proposition 6.32 (Uniqueness). The It6 decomposition is unique. That is, if X = @ B+M=Yy+C+N,
with: = = = =
> B,C bounded variation, By = Cy =0 _
> M, N martingale, My = Ny = 0.

Then Xo =Yy, B=C and M = N.










Corollary 6.33. Let dX; : oy dWy with Efot bsds < o0 and Efg Ug ds < 0o. Then X is a martingale
if and only if b=0.

bk G K e n mg.



T T T
Definition 6.34. If dX = bdt + o dW, define D;dX; = D;b; dt + / Doy dW;.
- A v

T T
Remark 6.35. Note / D;b; dt is a Riemann integral, ind / Doy dW; is a It6 integral.
0 0 U



6.6. Itd’s formula.

Remark 6.36. If f an d@ e differ df(t bl)thjf(t Xt)cit;+?£f(taXt>‘%_£
\
W» )Rl A
*6\

%

‘QC C’” moaxs ¢ (ajﬁ e &k e
A0 L el & CJ(é

SN



Theorem (It6’s formula, Theorem 6. 29)/5 f(@ t@%

(4 X0) = 9] (4 X0 e+ 0214 X0 4 + SO2T( X0) dIX, X],
T~ T~~~

Remark 6.37/ If dX; = by dt + oy dW; then % k/—\/-’
_ e~ y)
_|_

1
df(t, X,) = <8tf(t X,) +gg‘ 507 B, f (t, X;)o0 AW .



Example 6.38.

Find the quadratic variation of W2.

‘B)DJ(/ O
0L = 2
2

Gl =7
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Theorem (It6’s formula, Theorem 6.29). If f € C*2, then
df (t, Xo) = 00 f(t, X0) dt + Do f (1, Xy) dX; +SOLF (1, X0) d[X, X,
A G e A

Remark 6.37. If dX; = by dt + oy dW; then
e R 1
Af (1, X0) = (00 (8. X0) + biuf (8. X0) + SO70RF (8. X)) dt + O f (8, X ) AWV,

o i Ll %ﬁk @;f
t~> ?}& orige £ ch K

3%9\32 @@Q%M tf;s

X K




Intuition behind Ité’s formula.

.
W & %(T) X7> ié(% o>’” & (5&)6@))@ t

o

0

C@yuéw?l 0, oim

)@ Lot & %C@x} = %Qx)

» T
Yoo Ju- ) = \ o,k (1) 0, ‘%9\%@;}%

l



Intuition behind Ité’s formula.
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Ezample 6.38. Find the quadratic variation of W2.

fad e



t
FEzxample 6.39. Fin / W dWs.
0






Eml640LM Wi, dN W

> We know M, N are ma rtlngal
> Is M N a marting 1

O%@ DMA)/W’“%]/O QC{M%«A[QE< >
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Ezample 6.41. Let X; = tsin(W,). Is X? — [X, X]; a martingale?
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Example 6.42. S

gy

. Show that
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Theorem 6.43 (Lévy’s criterion). Let M be a continuous martingale such that WO =0 Z:md ([M, M]; = t.l Then
i —————————"

M is a Brownian motion.

RW\@ 0 »ﬁ@i@ Jg
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e W&—M% [3 w\ aﬁ\&g



O Sh Mv (D)

D e MaR(n) = NNl
U{Q@ - )W\% )i v o RV
— (N g = M@F %X
() ~ e ]
* i
LQA@Q@)% = ¢

—







a1 A

0

RN
ZIARY: A, CES

P
N o[u)(j

b






> §(0- SR %Mﬁf
M)

/)’\ﬂ e gwcﬁg A gw MJG/MQ(\J J\)(DJ"? ”97
Q\M&/\\/lé 0 \wvol % @g
)

ool = ¢

S









8 M) b (b-9)

g = @
7 2
M-, (.- L (L
= /QMb ) __:E\%Qj‘ t%)géé@o%)
A
Mg ¢ % Wob6¢)
Jud,
W )eXJgV )y K&;Y
KEY ong MUY &ke = Ee Ec












7. Review Problems

Problem 7.1 (From 2021 Midterm). Consider a discrete time market consisting ofand a_stock. The bank
pays interest rate r = 5% at every time period. Let :S:g denote the stock price at timén, and we know Sy = $10.
The stock price changes according to the flip of a fair coin: if the coin lands heads the stock price increases by
10% (i.e. Spy1 = 1. lS,ﬁld if the coin lands tails the stock price decreases by 5% (i.e. Sp41 = 0.955,). A

option pays the holder|(S3, |at time N = 5. Find the arbitrage free price of this option at time n = 1. Also ﬁnd
the number of shares héld 1n the replicating portfolio at time n = 0. Round your final answer two decimal places.

(I recommend rounding intermediate steps to three decimal places.)
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Problem 7.2. f 0 < r < s < t, find E(W;W;) and \E(W,. W, W;).

C@“ﬂ‘? EQEWQ — ¢hs = ¢

Chaf. E (W0, = E@WE@*@ >
= By By + ij
— O + g QWJ\WC@)@)
Gk 2 E@\Lwﬁ - g@9%> GWJ









Problem 7.3. Define the processes X,Y, Z by

t
e_szds7 Yt:exp(/ Wsds>7 Z, =tX?

Decompose each of these processes as the sum of a martingale and a process of finite first variation. What is the
quadratic variation of each of these processes?

T W Kb
ke K= oo l0y) g | (b 0= §€°
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Problem 7.4. Define the processes X,Y by

t t
def def
Xt:e Wsds, t =
— 0 ==

Given 0 < s < t, compute EX;, EY;, E;X;, E.Y;.
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t
Problem 7.5. Let M; = / WsdWs. Find a function f such that
0

&) d—efexp M — / f(s, Ws) ds

is a martingale.



Problem 7.6. Suppose 0 = o, is a deterministic (i.e. non-random) process, and M is a martingale such that
d[M, M]t = 0'? dt.

t
Xt :/ Uuqu
0

(1) Given \,s,t € R with 0 < s < t compute Ee*Vt and E erM:=Ms

(2) If r < s compute E exp(AM,. + u(M; — My)).

(3) What is the joint distribution of (M,, My — M,)?

(4) (Lévy’s criterion) If d[M, M|, = dt, then show that M is a standard Brownian motion.



Problem 7.7. Define the process X,Y by
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t
Problem 7.8. Let M; = / WsdWs. For s < t, is My — M independent of F,?7 Justify.
0



Problem 7.9. Determine whether the following identities are true or false, and justify your answer.

¢
(1) e** sin(2W;) = 2/ % cos(2W,) dW.
0

¢
(2) |Wy| = / sign(Ws) dWs. (Recall sign(z) =1if > 0, sign(z) = —1 if x < 0 and sign(z) =0if x =0.)
0









8. Black Scholes Merton equation

8.1. Market setup and assumptions.

. C>a_S<h: simple interest{@in 2 bank. ’
e Let At be small. e cash in bank at time n At.
« Withdraw at time EAt and_immediately re-deposit: C( (n+1)At = (1 4+ AH)Crag-
e Set t = nAt, send At — 0:10;C = rC |and —

_ — P ——
e 7 is called the [continuousl compounded interest rate.

o Alternate If a_bank pays interest ratep a ter time 1, then the equivalent continuously compounded interest
rate is{r = £+ In(1 + p). m
v
udl
((Jr ’\r{é&bﬂ@ erzo>:€
el

E = %MH@

L= sk
& G sl Me — “Cu

&b %/Nc -0
v&b —=(0)
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o a
e Stock price: Sipar = (1 —l—?At)St + noise. 4 = |+ @A i g {A
o) 8,0 Leg

> Varjance of noise should be proportional to m %} ¢ A&
Cl> Variance of noise should be proportional to[S#!

e S =5, =H57AE + oS (AW).
t+ AL t =H5¢ Al ¢~t( +) P G’I@M

Definition 8.1. A|Geometric Brownian motion)with parameters «, ¢ is defined by:

il :aStC,lL‘i_O’Stdji/t’-

e «a: Mean return rate (or percentage drift) /Y

 o: volatility (or percentage ility)

/lﬁ}’w J@M\ Wu %' QML %w‘oz,,



Proposition 8.2.| S; = 5, exp((a - —)t + O’Wt>

- K&, T WQ}GM}O

~ @ac wdb +T0Wb
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Market Assumptions. é,’@\,\ LM) V>
&

o 1 stock, Price S, modelled by GBM(«, o). , QM(
e Money market: Continuously compounded interest rate Q

> mt time t = Coe (OI‘ atCt = 7"Ct )

> Borrowing and lendlng rate are both r. %01/ é\

« Frictionloss (no transaction costs)
« Liquid (fractional quantities can be traded)
&

Mart
Lls W@B



8.2. The Black, Sholes, Merton equation. Consider a security that pays&VT = ¢g(St) lat maturity time 7.

Theorem 8.3. If the secumty can be replicated, and f = f(t x) s a function such that the wealth of the
replzcatmg portfolio is given yX: f(tést , then:

2 2

D o +reof + T —rf =0 z>0,0<7, (BS TIE)

(81
E:ﬂ e w>”lJ i<T, Cgmdj ol ).
(8. = x>0.

3)
Theorem 8.4. Conversely, ifje_satis es (8.1) (8 3) then the security can be replicated, and Xt f(t,Sy) is the

wealth of the replicating portfolio at any time t < T. A/+
emark 8.5. Wealth of replicating portfolio equals the arbitrage free price. WV‘L&
Remark 8.6. g(z) = (x — K) is a European call with strike K and maturity 7. _ C/‘
e T l 1
Remark 8.7. g(z) = (K — )" is a European put with strike K and maturity 7. | >

@ T G0 tha fpr all L e 6 =0 -4
280 D Ry U= 3(0)

KEP of hag b < g(o ) (i ) 27



Proposition 8.8. A standard change of variables gives an explicit solution to (8.1)—(8.3):

(8.4) f(t,g):/oo g;”i(xexp((r—f)f+oﬁ’y>)ﬂ¢;@/, (T:T—t.
P ———— "

—

Corollary 8.9. For Eump’e—a; calls, g(z) = (x — K)T, and
- —_

(8.5) f(t,x) = c(t,x) = aN(d (T — t,z)) — Ke "E=IN(d_(T — t,z))
where

aer 1 T o?
(8.6) cii(T, x) = J—\E(ln(E) + (7" i: 7)7’) )
and

-1 z 2

8.7 Nxdéf—/ eV /24y,
(8.7 Ny = [ ey

is the CDF of a standard normal variable.

@\u DL\»RM QQ‘LF\ % % MQ NN i [Q} )%



Remark 8.10. Equation (8.1) is called a /partial differential equation.| In order to have a unique solution it needs:
(1) A terminal condition (this is equation (8.3

(2) A boundary condition at = 0 (this is equatlon (8.2)),
(3) A boundary condition at mﬁmty (not discussed yet). ~
L > For put options, g(z) = (K — )", the boundary condition at infinity is

lim f(¢t,z)=0.
r—00
> For call options, g(z) = (x — K)™, the boundary condition at infinity is
hm [f(t,ac) —(x— Ke_r(T_t))] =0 or ft,z) = (x—Ke " T V) asz — oco.



Definition 8.11. If X; is the wealth of a self-financing portfolio then
dXt = é.t dSt + T'(Xt — AtSt) dt
= = —

for some adapted process A; (called thetrading strategy).

p\‘t@ &W\,Q; Q@q) é/v\ /WM
X o= 0,6, r K-45) )
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Proof of Theorem 8./. AA@W"(, % %LWé £< PDE
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Remark 8.12. @itrage free price does not depend on the mean return raﬂ
s UG- @Sl ¢ Tod,

Mgpn fw/J( WJ{
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Question 8.13. Consider a European call with maturity T and strike K. The payoff is Vo = (Sp — K)*. Our
proof shows that the arbitmgeMM@n by Vi = c(t, S;), where c is defined by (8.5). The

proof uses Itd’s formula, which requires c to be twice differentiable in x; but this is clearly false at t =T. Is the

proof still correct?

g c//%

4 = (x- KD
/e

( \ l
(e 7 »Jb@é, o il (em L | mm 0l A
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Proposition 8.14 (Put call parity). Consider a European put and European call with the same strike K and
maturity T'.

DWA/QP of call (given by (8.5))
> p(t,Sy) = AFP of put.
Then|c(t, z) — p(t,z) = x —7(@ and henceSp(t, ) =Ke "T=Y — g —¢(t,z).

R L I T e
-
% = QT/K & forind MNL
AFPJ,{) ol g%_ Kéw{@s}

T
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8.3. The Greeks. Let @( ) be the arbitrage f{ee price of a European call with maturlty T and strike K when

the spot price is . Recall / g § Eﬂm

c(t,x) =aN(dy) — Ke '™ d:ef

——

Definition 8.15. The delta s OgC.

Remark 8.16 (Delta hed@ngml&)@ (\) (3 C/p‘l; 0/""\[
Proposition 8.17. d,c = N( d+ - )(/7,

1 2
,TTt

L

- 7c/\)@l,(> < ’W;\y@\ >

90 = N(d ’f‘?d\)@\ ( _ )
Y >m&x se MM&L
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1 —d?
Definition 8.18. The| Gamma is 9?cland is given by|d%c = exp( +) .

o 2rT ~ 2

O ——

Definition 8.19. The(@is Oy, and is given by 0;c = —rKe ""N(d_) — 7N (dy)
= - =

e - ) (9@ . 8}(@(@» ;o(m L

T

o) wd =T
“beT




Proposition 8.20. (1) c_is increasing as a function of x. &*\/
(2) c is convexr as a function of Z.

(8) ¢ is decreasing as a function of t.

O =G 9e-n00) >0
@ BZC — fwy, >0
B b =T <o



Remark 8.21,(T0 properly hedge a short call, you always borrow frorri@ail‘{ Moreover Ay =1 if Sp > K,
Ar =0if St < K. -

P@% Ry»a = QX/\@%
§ w : A’b gw AJD %M( g Kras 4. @XL(JC)Q%)
Do e
N ,8) —a ¢ = eth &)
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Remark 8.22 (Delta neutral, m. Sa
————

is the spot price at time t.
o Short d,¢(t, zo) shares, and buy one call option valued at ¢(t, zo).

o Put M = 200,¢(t, zo) — c(t, z0) in the bank.
« What is the portfolio valie when if the stock price is 2_(and we hold our position)?
> (Delta neutral) Portfolio value = ¢(t, z) — tangent line.

> (Long gamma) By convexity, portfolio value is always non-negative.

%«/{ \MJWQ o&lm @P( «{m‘@, L1 = C@fb) + zp@KCCJC>lo>ﬂC@)7LD>
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9. \Multi-dimensional Ito calculus

e Let X and Y be two

e P={0=t1 <ty <t,=T}isa partltlon of [0,T].

Definition 9.1. The joint quadratic variation of X,Y, is defined by

Remark 9.2. The joint quadratic variation is sometimes written as d[X Y] = dXt dY}

X[ = b z(x /%
| [P1=D
/

Q&’m/ KQ Q\/L"ﬂ



Lemma 9.3.|[X,Y]r

X+YX+Y

—[X-Y,X -Y]p)

)W%)W N’@Vg&x-y






9. Multi-dimensional Ito6 calculus

e Let X and Y be two Itd processes.

. P:{O=t1<t1--~<tn=T}isapartitionof[O,T]. W

Definition 9.1. The@ quadratic variation of X,Y, is defined by

n—1

XY li X X, W
L’:]T - “PIHH;l}OZ( tiy1 tz)( tiv1 ti)’

= i=0 MAAAAAS TN
Remark 9.2. Th@@is sometimes written as d[X,Y]; = dX; dY;.

o =N

e (k) — ()



Lemma&&@z}i([X—i—Y?X—i—Y] - X-Y,X- Y]
=4

(N

7ot ey

Tt W (ol



Proposition 9.4. Say@re two semi-martingales.

o Write X = Xo + B+ where_%’bwtmatwnand M is a martingale.
o Write Y }/_b + C + N where C' has bounded variation and N is a martingale
e ThendX,Y], =d[M,N],.

Remark 9.5. Recall, all processes are implicitly assumed to be|adapted Jand continuous.



r—

Corollary 9.6. If X is a semi-martingale and B has bounded variation then [X, B] =0

C>@ (%,8] = ?([X%% XeB| — Viﬁf@{c@
] LA

© AU %8 = o] =D
y $b= %inf%»%o) + O

N



Remark 9.7 (Chain rule). If X, Y
d(f(t, X, Y2)) = 8f(t X Y)dt—}-@ It X Y)dX +0 f(t X Y)dY

_,———\/ _\

Remark 9.8 (Notation). 0,f = f , Opf = f , 0y f =

é% >ﬂ>

Y KLY ne i WMM
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Theorem 9.9 (Two-dimensional Itd formula).

o Let X Y be two processes.

o Let f F(t,z,y) be a Cl 2 function. That is:
> f is once differentiable in t. NI f{rm M\l@

> f is twice in both x, and y.
> All the above partial derivatives are continuous. Then:
)dt + 0. (2, XtaYt)dXt"‘a [t X, Yy) dYy Q?ng
%ftXthd t+32 f(t, X, Yi)d t"‘wftXt,Yt YQ

C v o

d(f(taXta K)) :(atf(t Xtv th
Remark 9.10. As with the 1D It6, will drop the arguments (¢, Xt, Y:). Remember they are there.
T

Remark 9.11 (Integral form of It6’s formula).

T
J(T. X, Yr) = [(0, X0, Yp) = /det+ 6fd§t+/ 0y dYs

—_—

1 . —
+3 / (82fd[X X+, fd[Y, Y], + 20,0, d[X,Y];)
0

L 4___/7




Intuition behind Theo m99
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Proposition 9.12 (Produc X d:— +YidX, -AﬂX Y)s ’
ﬁé be‘é Gug. Mk %/LL ;
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To use the multi-dimensional It6 formula, we need to compute joint quadratic variations.

Proposition 9.13. Let M N be continuous martingales, with EM? < oo and EN} < <.

(1) MN — [M, N] is also o continuous martingale.
(2) Com;ersely if MN — B is a continuous martingale for some continuous adapted, bounded variation
process B with By = 0, then B = [M, N].

T00f.
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Proposition 9.14. (1) (Symmetry) [X,Y] = [V, X]

(2) (Bi-linearity) If « € R, X,Y, Z are semi-martingales, [X,Y + aZ] = L)Q’l—i— alX, Z].
Proof. J —



Proposition 9.15. Let M, N be two martingales, o, T two adapted processes.
t t
o Let X; = osdM, and Y; = Ts dNj.

et b g

Remark 9.16. In differential form, if dX; = oy dM; and dY; = 74 dNy, then d[X,Y]; = oy d[M, N
> — Ll

Intuition.

Ak = K -X_

Aelf = B
= ATX A{\{ A T
L~ e
L Ix ) o adinn]



Proposition 9.17. If M, N areW EM? < 0o, EN? < oo and MN are independent,

then [M, N] = 0.
—

Remark 9.18 (Warning). Independence implies (E(MtNt) = EM,EN;.| But it does not imply E (M;N;) =
E,M,E;N;. So you can’t use this to show M N is a martingale, antdhence conclude [M, N] = 0. -
—

Correct proof.
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Remark 9.19. [M, N] = 0 does not imply M, N are independent. For example:
o Let M, :/ 1w, <oy dWs 'Ij
——— O —
. LetNt:/tl{W>0}dWs lM “’A) ﬁ(:”— > 2’0
M=) e @/0 z, D& 1/0 70@
&
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Question 9.20. Let W' and W? be two independent Brownian motions, and let W = (W' W?). Define the
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10. Risk Neutral Pricing

Goal

¢ Consider a market with a@n

o The interest rate R, is some adapted process.

e The stock price satisfies dSt = atSt dt + oSy dW. (Here a, o are adapted processes).
o Find the risk neutral measure and use it to price securities.

t
Definition 10.1. Let \D; = exp(—/ R, ds)j be the discount factor.
0

Remark 10.2. Note ;D = —R;D;.
Remark 10.3. D, dollars in the bank at time 0 becomes@in the bank at time ¢.

P@W C'(:,';W/L;M\}’W\a(%kw L
W = RO =0 = C eyl [RAs

| N



\_\—A
Theorem 10.5. Any security can be replicated. If a security pays VT at time T then the arbitrage free price at
time t s e

Vo= BDrv) = B(ewo( [ ~Roas) Vi),
D, =

Remark 10.6. We will explain the notation dP = Zr dP and prove both the above theorems later.
-

Doy hwe ¢ RIT Jula v, :DL%)LM(DNVN)

W
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Definition 10.7. We say £cis a Wf:
(1) P is equivalent to P (i.e. P(A) = 0 if and only if P(A) = 0)
(2) D.S; is a artingale.

Remark 10.8. As before, if i is a new measure, we use@o denote expectations with respect to P and@to
denote conditional expectations.

FEzxzample 10.9. Fix T > 0. Let ZT be a Fpr-measurable random variable.

N T e e T
N=D & =

« Can check EX = E(ZrX). That is / X dP = / X Zp dP.
- Q Q

e Notation: Write|dP = Zp dP.

Lemma 10.10. Let Z; = EyZr. If Xy is Fy-measurable, then %: Z%ﬁ;(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem. /\/ R ) ]
Corollary 10.11. M is martingale under P if and only if ZM is a martingale%ér P
‘ = —



O Piay elo )
(M= e(L2) > 0 (250
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Theorem 10.4. The (unique) risk neutral measure is given by/dlj = Z7 dP,|where
T T

O[t—.R/t

i’OU Q.)(%IO\A(M\% ZTzexp<—/0 9tth_%/0 9t2dt>, /@: Q4 ~

Theorem 10.5. Any security can be replicated. If a security pays Vr at time T, then the arbitrage free price at
time t s

V, = DitEt(D-T\LT,) - E, (exp(/tT _R, ds) VT) .

_

Remark 10.6. We will explain the notation dP = Zr dP and prove both the above theorems later.
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Definition 10.7. We say P is a risk neutral measure if:
1) P is equivalent to P (i.e. P(A) =0 if and only if P(A) = 0)

(2) D;S;is a P martingale.
== - } ) )
Remark 10.8. As before, if P is a new measure, we use F to denote expectations with respect to P and E; to

denote conditional expectations.

FEzxzample 10.9. Fix T > 0. Let Z7 be a Fp-measurable random variable.
e Assume Z7 >0 and EZr = 1.

T~
« Define P(A):E(ngA)z/ Zr dP.
R A

R —

« Can check EX = E(ZrX). That is / X dP = / X Zp dP.
g Q Q
e Notation: Write|dP = Zp dP.

Lemma 10.10. Let Z; = E;Zp. If X; is Fi-measurable, then Es)g

Proof. You will see this in the proof of the Girsanov theorem.

Corollary 10.11. M is martingale under P if and only z'fis a martingale under P.
—_— —

( W






Theorem 10.12 (Cameron, Martin, Girsanov). Fiz T >0 and le an adapted process.
e Define Wt / bsds (i.e. QIW\M) CU/O Z‘TA/{ L (A/W
e dP = Zp dP, where Z, —exp( / bs AW, — f/ |bs |2ds>

- % — :

f Z is a martingale,| then P is an equivalent measure under which W is a Brownian motion up to time T'.
< =
c —

t



Proposition 10.13. dZ; = —Z;b; - Cégt'

[

e
Question 10.14. Looks like Z is a martingale. Why did we assume it in Theorem 10.127

: >
K= Todn, — A=

iokz &s>
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Idea behind the proof of Theorem 10.12.
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Theorem (Theorem 10.4). The (unique) risk neutral measure is given by|dP = Zr dP ) where
- T T
1 o — R

ZT:exp<—/ etth_ﬁ/ 9t2dt>7 0, = ta b
0 0 t

Proof of Theorem 10.4.

ok DQ Jro e n ? e
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Theorem 10.15. )/(t\ represents the wealth of a self-financing portfolio if and only if Di Xt is a P martingale.

Remark 10.16. The proof of the backward direction requires the martingale representation theorem, and is
outlined on your homework.

Remark 10.17. This is the analog of Theorem 4.57

Proof of the forward direction.
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Theorem (Theorem 10.5). Any security can be replicated. If a security pays Vr at time T, then the arbitrage
free price at time t is - *

V= BiDrve) = Bu(own( [ ~Reas) V).

Remark 10.18. This is the analog of Proposition 4.1.
Proof of Theorem 10.5.
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11. Black Scholes Formula revisited

o Suppose the interest rate R; = r (is constant in time
 Suppose the price of the stock is a GBM(q, o) (both jx, o are constant in time},
———

Theorem 11.1. Consider a security that pays Vr = g(St) at maturity time T. The arbitrage free price of this

security at any time t < T is given by f(t,S;), where
- —_—— 5
2 e Y /2dy

\ f(t,x):/oo e—rTg<mexp((T—%)L+a_@))W, T=T—1.

—00

(8.4)

Remark 11.2. This proves Proposition 8.8.
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Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a Furopean call with strike £ and maturity
T is given by: -

(8.5) c(t,x) = aN(d (T — t,2)) — Ke " T"IN(d_(T - t,z))
where

(55) tstra) 2 2 (m(2)+ (r=5)). |
and

(8.7) N(z) ¥ \/% woo eV 2y,

is the CDF of a standard normal variable.

Remark 11.4. This proves Corollary 8.9.
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12. Review problems

Problem 12.1. Consider a financial market consisting of a risky asset and a money market account. Suppose the
return rate on the money market account i) and the price of the risky m is a geometric
Brownian motion with mean return rate a and volatility o. Here r,« and o are all deterministic constants.
Compute the arbitrage free price of derivative security that pays

at maturity 7. Also compute the trading strategy in the replicating portfolio.
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Problem 12.2. Let X ~ N(0,1), and a,a, 8 € R. Define a new measure P by
dP = exp(aX + 3) dP.
Find «, 8 such that X —1— a ~ N(0,1) under p.
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Problem 12.3. Let f be a deterministic function, and define

t
X d:‘*f/ f(s)Wsds.
— 0 - = =
Find the distribution of X.
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Problem 12.4. Let xg,pu, 0,0 € R, and suppose X is an It6 process that satisfies

dx(t) —f_u Xy)dt + o Wy, (@ 0. ?m%}
with Xg = xg.
(a) Find functions f = f(t) and g = g(s,t) such that

X(t) = £(t) +/O g(s.t) AW, .

—

The functions f, g may depend on t e parameters zg, J, 4 and o, but should not depend on X.
(b) Compute EX; and cov(X,, X;) explicitly.
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Problem 12.5. Let W be a Brownian motion, and define %?WQ(> c% \ X /2 D

— t
B, = / sign(Wy) dWs .
- 0

(a) Show that B is a Brownian motion. — X<
(b) Is there an adapted process o such that

t
Wt:/ O’SdBS?
0

If yes, find it. If no, explain why.
( ) Compute the joint quadratic variation [B, W].
) Are B and W uncorrelated? Are they independent? Justify.
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Problem 12.6. Suppose o, T, p are three deterministic functions and M and N are two continuous martingales
with respect to a common filtration {F;} such that My = Ny = 0, and

d[M,M]t:Utdt, d[N,N]t:Ttdt, and d[M,N]t:ptdt

(a) Compute the joint moment generating function E exp(AM (t) + pN(t)).
(b) (Lévy’s criterion) If c = 7 =1 and p = 0, show that (M, N) is a two dimensional Brownian motion.



Problem 12.7. Let W be a Brownian motion. Does there exist an equivalent measure P under which the process
tW; is a Brownian motion? Prove it.



Problem 12.8. Let 6 € R and define )
0t
Iy = exp(HWt — 7) .
Given 0 < s < t, and a function f, find a function such that

Esf(Zt) = g(Zs) .

Your formula for the function g can involve f, s, t and integrals, but not the process Z or expectations.



Problem 12.9. Consider the N period Binomial model with N = 5, and parameters 0 < d < 1+ r < u. At
maturity N = 5, a security pays $1 if S5 > (1 +r)S4, and 0 otherwise. Find the arbitrage free price and trading
strategy trading at time 0.



