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12. Review problems

Problem 12.1. Consider a financial market consisting of a risky asset and a money market account. Suppose the
return rate on the money market account i) and the price of the risky m is a geometric
Brownian motion with mean return rate a and volatility o. Here r,« and o are all deterministic constants.
Compute the arbitrage free price of derivative security that pays

at maturity 7. Also compute the trading strategy in the replicating portfolio.
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Problem 12.2. Let X ~ N(0,1), and a,a, 8 € R. Define a new measure P by
dP = exp(aX + 3) dP.
Find «, 8 such that X —1— a ~ N(0,1) under p.
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Problem 12.3. Let f be a deterministic function, and define

t
X d:‘*f/ f(s)Wsds.
— 0 - = =
Find the distribution of X.
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Problem 12.4. Let xg,pu, 0,0 € R, and suppose X is an It6 process that satisfies

dx(t) —f_u Xy)dt + o Wy, (@ 0. ?m%}
with Xg = xg.
(a) Find functions f = f(t) and g = g(s,t) such that

X(t) = £(t) +/O g(s.t) AW, .

—

The functions f, g may depend on t e parameters zg, J, 4 and o, but should not depend on X.
(b) Compute EX; and cov(X,, X;) explicitly.
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Problem 12.5. Let W be a Brownian motion, and define %?WQ(> c% \ X /2 D

— t
B, = / sign(Wy) dWs .
- 0

(a) Show that B is a Brownian motion. — X<
(b) Is there an adapted process o such that

t
Wt:/ O’SdBS?
0

If yes, find it. If no, explain why.
( ) Compute the joint quadratic variation [B, W].
) Are B and W uncorrelated? Are they independent? Justify.
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Problem 12.6. Suppose o, T, p are three deterministic functions and M and N are two continuous martingales
with respect to a common filtration {F;} such that My = Ny = 0, and

d[M,M]t:Utdt, d[N,N]t:Ttdt, and d[M,N]t:ptdt

(a) Compute the joint moment generating function E exp(AM (t) + pN(t)).
(b) (Lévy’s criterion) If c = 7 =1 and p = 0, show that (M, N) is a two dimensional Brownian motion.



Problem 12.7. Let W be a Brownian motion. Does there exist an equivalent measure P under which the process
tW; is a Brownian motion? Prove it.



Problem 12.8. Let 6 € R and define )
0t
Iy = exp(HWt — 7) .
Given 0 < s < t, and a function f, find a function such that

Esf(Zt) = g(Zs) .

Your formula for the function g can involve f, s, t and integrals, but not the process Z or expectations.



Problem 12.9. Consider the N period Binomial model with N = 5, and parameters 0 < d < 1+ r < u. At
maturity N = 5, a security pays $1 if S5 > (1 +r)S4, and 0 otherwise. Find the arbitrage free price and trading
strategy trading at time 0.



