herealized G. J.M. (x, T adapted processes) $dS_{t} = \kappa_{t} S_{t} dt + \nabla_{t} S_{t} dW_{L}$ Discont forlow $D_t = exp \left(-\int_{-}^{t} R_s ds.\right)$ po Intest vato Rt. (adulated process) $C_t = \cosh in \text{ Bowle at time to}$ $dC_t = +R_tC_t dt \left(C_t = C_0 \cosh(+\int_0^R R_s ds) \right)$ hast time ?

Theorem 10.4. The (unique) risk neutral measure is given by $d\tilde{P} = Z_T dP$, where

100 explain
$$Z_T = \exp\left(-\int_0^T \theta_t \, dW_t - \frac{1}{2} \int_0^T \theta_t^2 \, dt\right), \quad \underline{\theta_t} = \frac{\alpha_t - R_t}{\sigma_t}.$$

Theorem 10.5. Any security can be replicated. If a security pays V_T at time T, then the arbitrage free price at

Theorem 10.3. Any security cut be replicated. If a security page
$$V_T$$
 at time T , then the arbitrage free price at time t is
$$V_t = \frac{1}{D_t} \tilde{\boldsymbol{E}}_t(D_T V_T) = \tilde{\boldsymbol{E}}_t \left(\exp\left(\int_t^T -R_s \, ds \right) V_T \right).$$

Remark 10.6. We will explain the notation $dP = Z_T dP$ and prove both the above theorems later.

Note
$$\int_{t}^{t} \widetilde{E}_{t}(D_{T}V_{T}) = \int_{t}^{t} \widetilde{E}_{t}(exp(-\int_{t}^{t} R_{s} ds) V_{T})$$

$$= \int_{t}^{t} \widetilde{E}_{t}(D_{T}V_{T}) = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V_{T} = \int_{t}^{t} \underbrace{exp(-\int_{t}^{t} R_{s} ds) V_{T}} exp(-\int_{t}^{t} R_{s} ds) V$$

Definition 10.7. We say \tilde{P} is a risk neutral measure if:

(1)
$$\tilde{P}$$
 is equivalent to P (i.e. $\tilde{P}(A) = 0$ if and only if $P(A) = 0$)

(2) $D_t S_t$ is a $\tilde{\boldsymbol{P}}$ martingale.

Remark 10.8. As before, if \tilde{P} is a new measure, we use \tilde{E} to denote expectations with respect to \tilde{P} and \tilde{E}_t to denote conditional expectations.

Example 10.9. Fix T > 0. Let Z_T be a \mathcal{F}_T -measurable random variable.

- Assume $Z_T > 0$ and $EZ_T = 1$.
- Define $\tilde{P}(A) = E(Z_T \mathbf{1}_A) = \int_A Z_T dP$.
- Can check $\tilde{E}X = E(Z_TX)$. That is $\int_{\Omega} X d\tilde{P} = \int_{\Omega} X Z_T dP$. Notation: Write $d\tilde{P} = Z_T dP$.

Lemma 10.10. Let $Z_t = E_t Z_T$. If X_t is \mathcal{F}_t -measurable, then $\tilde{E}_s \underline{X_t} = \frac{1}{Z_s} \underline{E_s} (\underline{Z_t} \underline{X_t})$.

Proof. You will see this in the proof of the Girsanov theorem.

Corollary 10.11. M is martingale under \tilde{P} if and only if ZM is a martingale under P.

Lock: Sag M is a
$$\mathcal{P}$$
 mg.

Wat to chow ZM is a \mathcal{P} mg.

Cample $E_s(Z_tM_t) = Z_s E_s M_t$ (hena 10.10)

 $= Z_s M_s$ (° M is a \mathcal{P} mg)

Contactly, sag ZM is a \mathcal{P} mg.

NTS M is a \mathcal{P} mg: $E_s M_t = \frac{1}{Z} E_s(Z_tM_t) = \frac{1}{Z_s} Z_s M_s$

Theorem 10.12 (Cameron, Martin, Girsanov). Fix T > 0 and let be an adapted process.

- Define $\underline{\tilde{W}}_t = \underline{W}_t + \int_0^t \underline{b}_s \, ds$ (i.e. $\underline{d\tilde{W}}_t = \underline{b}_t \, dt + \underline{d\tilde{W}}_t$).
- $d\tilde{P} = Z_T dP$, where $Z_t = \exp\left(-\int_0^t b_s dW_s \frac{1}{2} \int_0^t |b_s|^2 ds\right)$.

If
$$Z$$
 is a martingale, then \tilde{P} is an equivalent measure under which \tilde{W} is a Brownian motion up to time T .

Proposition 10.13.
$$dZ_t = -Z_t b_t \cdot dW_t$$
.

Question 10.14. Looks like Z is a martingale. Why did we assume it in Theorem 10.12?

Let
$$X_t = \int_0^t b_s dW_s$$
 $\longrightarrow d(X_t X_t) = b_t^2 dt$
Let $X_t = \int_0^t b_s dW_s$ $\longrightarrow d(X_t X_t) = b_t^2 dt$
Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t) = b_t^2 dt$

Let $X_t = b(b, X_t)$ $\longrightarrow d(x_t X_t)$

$$dz = d \{(t, X_t) = 2t dt + 2t dX + \frac{1}{2} 2t d(X_t, X_t)$$

$$= -\frac{1}{2} b_t^2 2t dt - 2t dX_t + \frac{1}{2} 2t d(X_t, X_t)$$

$$= -\frac{1}{2} b_t^2 2t dt - 2t b_t dW + \frac{1}{2} 2t dt$$

= - 2, 6, dW,

Zie anly a my of E J b z z ds < 80

(Not every to check in general)

Idea behind the proof of Theorem 10.12.

To show W is a BM Va Levys Corleion (D) W is a cts process, W ie a BM when P (=) (1) W is a mg $(2) [()) ()]_{t,} = t$

Church (1) & (2) ?

$$d\widetilde{W} = b dt + dW \qquad \int \Rightarrow d(\widetilde{W}, \widetilde{W}) = dt \Rightarrow (\overline{Z}).$$
does not affect QV

By Product whe, $d(z\tilde{w}) = z d\tilde{w} + \tilde{w} dz + d[z,\tilde{w}]$ Parall $dz = -bz_1 d\tilde{w}$ $z d\tilde{w} = bdt + d\tilde{w}$

$$\Rightarrow d(2\widetilde{W}) = \underbrace{\xi(bdt + dw)} - \widetilde{W}_b b_2 dW_b + (-bz_b 1)dt$$

$$= \underbrace{Z(1 - \widetilde{W}_b)}_{b} dW_b$$

$$\Rightarrow \underbrace{ZW}_{b} \text{ i.e. a. my. ender } P \Rightarrow \mathbb{O}$$

$$\text{By heary } \Rightarrow \widetilde{W}_{b} \text{ is a. my. moder } P$$

Theorem (Theorem 10.4). The (unique) risk neutral measure is given by $d\tilde{P} = Z_T dP$, where $Z_T = \exp\left(-\int_0^T \theta_t dW_t - \frac{1}{2}\int_0^T \theta_t^2 dt\right)$, $\theta_t = \frac{\alpha_t - R_t}{\sigma_t}$.

Proof of Theorem 10.4.

Want
$$D_t S_t$$
 to be a P mg.

 $D_t = exp(-\int_t^t R_t dt) \Rightarrow dD_t = -R_t D_t dt$ (Finds 1st var)

 $dS_t = \alpha S_t dt + \gamma S_t dW$

Compute $d(D_t S_t) = D_t dS_t + S_t dD_t + d(D_t) S_t$

$$= D_{t}\left(\underset{S}{\text{ASdt}} + \underset{S}{\text{ESdW}}\right) - RD_{t}S_{t}dt + O$$

$$= D_{t}S_{t}\left(\underset{S}{\text{A-R}_{t}}\right)dt + QT_{t}S_{t}dW_{t}$$

$$= D_{t}T_{t}S_{t}\left[\underset{S}{\text{At-R}_{t}}\right]dt + dW$$

$$= D_{t}T_{t}S_{t}\left[\underset{S}{\text{At-R}_{t}}\right]dt + dW$$
Change $W = W_{t} + \int_{0}^{\infty} g_{s}ds$, where $D_{t} = \alpha_{t} - R_{t}$

Choese P by Gingarow to note W n BM. $\Rightarrow dP = Z_T dP \qquad \Rightarrow Z_T = exp \left(-\int_0^t \theta_s dW_s - \frac{1}{z} \int_0^z ds \right)$ $\Rightarrow d(D_t S_t) = Q S_t r_t dW$ BM when P

Des is a my man Poll.

Theorem 10.15. X_t represents the wealth of a self-financing portfolio if and only if D_tX_t is a \tilde{P} martingale.

 $Remark\ 10.16.$ The proof of the backward direction requires the $martingale\ representation\ theorem$, and is outlined on your homework.

Remark 10.17. This is the analog of Theorem 4.57

Proof of the forward direction.

Assume X is a self for pot
Show D_t X_t is a P ng.

$$OSelf$$
 fin \Rightarrow $dX_t = 2t dS_t + R_t(X_t - 2_tS_t) dt$
 $OSelf$ for dS in tames of dW

$$dW_{t} = Q_{t} dt + dW, \qquad Q = \frac{\alpha - R}{T}$$

$$dS = \alpha S dt + \tau S dW$$

$$= \alpha S dt + \tau S dW - Q dt$$

$$= \alpha S dt + \tau S dW - (\alpha - R) S dt$$

$$= RS dt + \tau S dW - Reflect W - RE$$

Comple
$$N(D_t X_t) = D_t dX_t + X_t dD_t + d D_t X_t$$

$$= D_t (A_t dS_t + B(X - A_t S_t) dt) - RD_t X_t dt$$

$$= D_t A_t (R_t S_t dt + \nabla_t S_t dW) - D_t A_t R_t S_t dt$$

$$= D_t A_t (R_t S_t dW) - D_t A_t R_t S_t dW$$

$$= D_t A_t (R_t S_t dW) - D_t A_t R_t S_t dW$$

$$= D_t A_t (R_t S_t dW) - D_t A_t R_t S_t dW$$

Theorem (Theorem 10.5). Any security can be replicated. If a security pays V_T at time T, then the arbitrage free price at time t is

$$V_t = \frac{1}{D_t} \tilde{\mathbf{E}}_t(D_T V_T) = \tilde{\mathbf{E}}_t \left(\exp\left(\int_t^T -R_s \, ds \right) V_T \right).$$

Remark 10.18. This is the analog of Proposition 4.1.

Proof of Theorem 10.5.

Replicate the sec. of Final a self fin pout with payoff =
$$\frac{1}{2}$$
 Choose $X_t = \frac{1}{2} \sum_{t=1}^{\infty} (D_t V_t)$.

① NTS $X_t = V_t$ (true)

$$\begin{array}{lll} \text{(2)} & \text{NTS} & X_t = \text{wealth} & \text{of a cell fin post.} \\ & \text{(3)} & \text{D}_t X_t & \text{is a } P & \text{urg.} & \text{famla for } X_t \\ & \text{(ampule } & \text{E}_s(P_t X_t) = \text{E}_s\left(\hat{E}_t\left(P_t V_T\right)\right) \\ & \text{tenser} & \text{E}_s(D_t V_t) \\ & = D_s X_s & \text{(Faula for } X_t). \end{array}$$

11. Black Scholes Formula revisited

- Suppose the interest rate $R_t = r$ (is constant in time)
- Suppose the price of the stock is a $GBM(\alpha, \sigma)$ (both α, σ are constant in time).

Theorem 11.1. Consider a security that pays $V_T = g(S_T)$ at maturity time T. The arbitrage free price of this security at any time $t \leq T$ is given by $f(t, S_t)$, where

$$f(t, x) = \int_{-\infty}^{\infty} e^{-r\tau} a(x \exp((r - \frac{\sigma^2}{2})\tau + \sigma\sqrt{\tau}u)) \frac{e^{-y^2/2}dy}{\tau} \qquad \tau = T - t$$

Duch Pods = ~ Stat + T St divt

$$\Rightarrow S \text{ is GBM}(r,r) \text{ under } \tilde{P}.$$

$$\Rightarrow S_{t} = S_{0} \exp\left(\left(r - r^{2}\right)t + r \tilde{W}_{t}\right)$$

$$\Rightarrow S_{T} = S_{0} \exp\left(\left(r - r^{2}\right)T + r \tilde{W}_{T}\right)$$

$$\Rightarrow S_{T} = S_{0} \exp\left(\left(r - r^{2}\right)T + r \tilde{W}_{T}\right)$$

$$\Rightarrow S_{T} = S_{0} \exp\left(\left(r - r^{2}\right)T + r \tilde{W}_{T}\right)$$

Sworthole in &

$$V_{t} = e^{-rT} \underbrace{E}_{t} g(S_{T})$$

$$= e^{-rT} \underbrace{E}_{t} g(S_{T})$$

Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a European call with strike K and maturity T is given by: $c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x))$

(8.5)
$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x))$$
where

(8.6)
$$d_{\pm}(\tau, x) \stackrel{\text{def}}{=} \frac{1}{\sigma\sqrt{\tau}} \left(\ln\left(\frac{x}{K}\right) + \left(r \pm \frac{\sigma^2}{2}\right)\tau\right), \quad \text{and}$$

(8.7) $N(x) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} \, dy \,,$

Remark 11.4. This proves Corollary 8.9.

Substitute
$$g(x) = (x-k)^{+}$$
 in $(x+k)^{-}$

$$C(t,x) = e^{-\pi t} \int_{-\infty}^{\infty} (x e^{(x-t/2)\tau} + \tau(\tau s) - k)^{+} e^{-t/2} \frac{dy}{\sqrt{2\pi}}$$

$$Calm \times e^{(r-r/2)} t + r r y = r$$

$$=) \left(r - \frac{c^2}{2} \right) C + T \cdot C \cdot y = \ln \left(\frac{K}{X} \right) = -\ln \left(\frac{K}{K} \right)$$

$$\Rightarrow y = -\frac{1}{\sqrt{2}} \left(\ln \left(\frac{\xi}{K} \right) + \left(\frac{2}{\sqrt{2}} \right) \tau \right)$$

5 (+ X)

$$C(t,x) = e^{-xt} \int_{-d}^{dx} \left(xe^{(x-\sqrt{2})t} + \sqrt{tt} y - k\right) e^{-y/2} dy$$

$$= -d \int_{-d}^{dx} \left(xe^{(x-\sqrt{2})t} + \sqrt{tt} y - k\right) e^{-y/2} dy$$

$$= -d \int_{-d}^{dx} \left(xe^{(x-\sqrt{2})t} + \sqrt{tt} y - k\right) e^{-y/2} dy$$