9. Multidimensional Ito calculus

- Let X and Y be two Itô processes.
- $P=\left\{0=t_{1}<t_{1} \cdots<t_{n}=T\right\}$ is a partition of $[0, T]$.

Definition 9.1. The joint quadratic variation of X, Y, is defined by

Remark 9.2. The joint quadratic variation is sometimes written as $d[X, Y]_{t}=d X_{t} d Y_{t}$.

$$
4 a b=(a+b)^{2}-(a-b)^{2}
$$

Lemma 9.3. $[X, Y]_{T}=\frac{1}{4}\left([X+Y, X+Y]_{T}-[X-Y, X-Y]_{T}\right)$

Proposition 9.4. Say X, Y are two semi-martingales.

- Write $\underline{X}=X_{0}+\underline{B}+\underline{M}$, where \underline{B} has bounded variation and M is a martingale.
- Write $\overline{\bar{Y}}=\underline{Y_{0}}+\bar{C}+\underline{N}$ where C has bounded variation and N is a martingale.

Remark 9.5. Recall, all processes are implicitly assumed to be adapted and continuous.

Corollary 9.6. If X is a semi-martingale and B has bounded variation then $[X, B]=0$.

$$
\rightarrow(0)[x, B]=\frac{1}{4}(\underbrace{[x+B, x+B]}_{[x, x]}-[\underbrace{[x-B, x-B]}_{[x, x]})\}=0
$$

$$
\begin{aligned}
& \text { (2) } X=X_{0}+\tilde{C}+[M \\
& \text { a } \left.\& B=B_{0}+\left(B-B_{0}\right)+\{0]\right\}[x, B]=[M, 0]=0
\end{aligned}
$$

Remark 9.7 (Chain rule). If $\underline{\underline{X}}, \underline{\underline{Y}}$ are differentiable functions of t, then

$$
d\left(f\left(t, X_{t}, Y_{t}\right)\right)=\partial_{t} f\left(t, X_{t}, Y_{t}\right) d t+\partial_{x} f\left(t, X_{t}, Y_{t}\right) d X_{t}+\partial_{y} f\left(t, X_{t}, Y_{t}\right) d Y_{t}
$$

Remark 9.8 (Notation). $\partial_{t} f=\frac{\partial f}{\partial t}, \partial_{x} f=\frac{\partial f}{\partial x}, \partial_{y} f=\frac{\partial f}{\partial y}$.

$$
f=f(t, x, y)
$$

$$
+\partial_{y} f>\frac{d y_{t}}{d t}
$$

th x \& y ane nat dit, thu

Theorem 9.9 (Two-dimensional Itô formula).

- Let X, Y be two processes.
- Let $\bar{f}=\bar{f}(t, x, y)$ be a $C^{1,2}$ function. That is: $\triangleright f$ is once differentiable in t
$\triangleright f$ is twice in both x, and y.
\triangleright All the above partial derivatives are continuous. Then:

$$
\begin{aligned}
& \stackrel{{ }_{d\left(f\left(t, X_{t}, Y_{t}\right)\right)}}{ }=\overparen{\partial_{t} f\left(t, X_{t}, Y_{t}\right) d t+\partial_{x} f\left(t, X_{t}, Y_{t}\right) d X_{t}+\partial_{\underline{y}} f\left(t, X_{t}, Y_{t}\right) \underline{d Y_{t}}} \\
& +\frac{1}{2}[\partial_{x}^{2} f\left(t, X_{t}, Y_{t}\right) d \underline{\underline{[X, X}]_{t}}+\underbrace{\partial_{y}^{2} f}\left(t, X_{t}, Y_{t}\right) d[Y, Y]_{t}+2 \text { def }\left(t, X_{t}, Y_{t}\right) d[X, Y]_{t}]
\end{aligned}
$$

Remark 9.10. As with the 1D Itô, will drop the arguments $\left(t, X_{t}, Y_{t}\right)$. Remember they are there.
Remark 9.11 (Integral form of Itô's formula).

$$
\begin{aligned}
& f\left(T, X_{T}, Y_{T}\right)-f\left(0, X_{0}, Y_{0}\right)=\int_{0}^{T} \underline{\partial_{t} f} d t+\int_{0}^{T} \partial_{x} f d{\underset{\tau}{X}}_{t}+\int_{0}^{T} \partial_{\underline{y}} f d Y_{t} \\
& +\frac{1}{2} \int_{0}^{T}\left(\partial_{x}^{2} f d[X, X]_{t}+\partial_{y}^{2} f \stackrel{\rightharpoonup}{d[Y, Y]_{t}}+2 \partial_{x} \partial_{y} f d[X, Y]_{t}\right)
\end{aligned}
$$

Intuition behind Theorem 9.9.
(1) ID Ito: $\partial^{2} f d[x, x]$ came from taylar

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\text { suall }
$$

(2) Ir 2D: Taybers fomls is

$$
\begin{aligned}
& f(x+h, y+k) \approx f(x, y)+h \partial_{x} f(x, y)+k \partial_{y} f(x, y) \\
& f \frac{1}{2}[\underbrace{\partial^{2} f h^{2}}_{Q V(x)}+\underbrace{\partial_{j}^{2} f k^{2}}_{Q V(y)}+\underbrace{2 \partial_{x} \partial_{j} f}_{J_{\sinh }} \underbrace{2} h k]
\end{aligned}
$$

Proposition 9.12 (Product rule). $d(\underline{\underline{X Y}})_{t}=\underline{\underline{X}}_{t} \underline{\underline{\underline{L}}} \underline{Y_{t}}+Y_{t} d X_{t}+d[X, Y]_{t}$
If f \& g are diff fur,

$$
\frac{d}{d f}(f g)=\frac{d f}{d k} \underline{g}+f \frac{d g}{d t}
$$

Chen product mound using Ito!
hat $f(x, y)=x y$

$$
\begin{aligned}
& \partial_{f f}=0 \\
& \partial_{x f}=y \quad \partial_{y f}=x \\
& \partial_{x}^{2} f=0 \\
& \partial_{y} \partial_{f}^{2}=0 \\
& \partial_{x} \partial_{y f} f=1
\end{aligned}
$$

By Ifo:

$$
\begin{aligned}
& d\left(x_{t-1}^{y}\right)=d\left(f\left(x_{t} y_{t}\right)\right) \\
& =\partial_{b f} d t+\partial_{x f} d x_{t}+\partial_{y f} d y_{t} \\
& \left.\quad+\frac{1}{2}\left[\partial_{x}^{2} f d[x, x]+\partial_{y}^{2} f d x_{y}, y\right]+2 \partial_{x} j f d[x, y]\right] \\
& =0
\end{aligned}
$$

To use the multidimensional Ito formula, we need to compute joint quadratic variations.
Proposition 9.13. Let \underline{M}, N be continuous martingales, with $\boldsymbol{E} M_{t}^{2}<\infty$ and $\boldsymbol{E} N_{t}^{2}<\infty$.
(1) $M N-[M, N]$ is also a continuous martingale.
(2) Conversely if $M N-B$ is a continuous martingale for some continuous adapted, bounded variation process B with $B_{0}=0$, then $B=[M, N]$.

Proof.

$$
\begin{aligned}
& \text { NOS } M N-L M, N] \text { is a } M A \\
& d(M N-[M, N]) \stackrel{\text { Pratt me le }}{=} M d N+N d M+d[M, N]-d[M, N] \\
& =M d N+N d M \\
& M_{M}^{=} .
\end{aligned}
$$

Proposition 9.14. (1) (Symmetry) $[\underline{X, Y}]=[\underline{Y, X}]$

(2) (Bi-linearity) If $\alpha \in \mathbb{R}, X, Y, Z$ are semi-martingales, $[\underline{X}, \underbrace{Y+\alpha Z]}=\underbrace{[X, Y]}+\underset{\underline{s}}{\alpha}[X, Z]$. Proof.

Proposition 9.15. Let $\underset{\subset}{M}, \underline{N}$ be two martingales, σ, τ two adapted processes.

- Let $X_{t}=\int_{0}^{t} \sigma_{s} d M_{s}$ and $\underline{Y_{t}}=\int_{0}^{t} \tau_{s} d N_{s}$.
- Then $\left.[X, Y]_{t}=\int_{0}^{t} \sigma_{s} \tau_{s} d[M, N]_{s}\right] \in$ Lan af our male to compute QV of It in int Remark 9.16. In differential form, if $d X_{t}=\sigma_{t} d M_{t_{3}}$ and $d Y_{t}=\tau_{t} d N_{t}$, then $d[X, Y]_{t}=\sigma_{t} \tau_{t} d[M, N]_{t}$. Intuition.

$$
\begin{aligned}
& \Delta_{0} X=X_{t_{i+1}}-X_{t_{i}} \approx r_{t_{i}} \Delta_{i} M \\
& \Delta_{0} y= \\
& \approx \Delta_{t_{i}} \Delta_{0} N \\
& \Delta_{i} X \Delta_{i} Y \approx \sigma_{t_{i}} \tau_{t_{i}} \underbrace{}_{i} M \Delta_{i} N \\
& d[X, Y]
\end{aligned}
$$

Proposition 9.17. If M, N are continuous martingales, $\boldsymbol{E} M_{t}^{2}<\infty, \boldsymbol{E} N_{t}^{2}<\infty$ and M, N are independent, then $[M, N]=0$.
Remark 9.18 (Warning). Independence implies $\boldsymbol{E}\left(M_{t} N_{t}\right)=\boldsymbol{E} M_{t} \boldsymbol{E} N_{t}$. But it does not imply $\boldsymbol{E}_{s}\left(M_{t} N_{t}\right)=$ $\underbrace{}_{s} M_{t} \boldsymbol{E}_{s} N_{t}$. So you can't use this to show $M N$ is a martingale, and hence conclude $[M, N]=0$.
Correct proof.

$$
\rightarrow \text { Tuiky }
$$

$$
\text { Intention: }[M, N]_{T}=\lim _{\|P\| \rightarrow 0} \sum \operatorname{\Delta oM} \operatorname{lon}
$$

$$
\text { Trick: Comate } E\left(\sum \Delta_{i} M \Delta ; N\right)^{2} \frac{\text { ill show }}{\|P\| \rightarrow 0} \rightarrow 0
$$

$$
\begin{aligned}
& \text { chale }=0
\end{aligned}
$$

Remark 9.19. $[M, N]=0$ does not imply M, N are independent. For example:

$$
=\underline{=}
$$

$$
\begin{aligned}
& \text { - Let } \underline{M_{t}}=\int_{0}^{t} \mathbf{1}_{\left\{\underline{\left\{W_{s}<0\right\}}\right.} d W_{s} \\
& \text { - Let } \left.\stackrel{N_{t}}{=}=\int_{0}^{t} \mathbf{1}_{\left\{W_{s} \geqslant 0\right\}} d W_{s}\right\} \\
& M+N=\int_{0}^{t}\left(\mathbb{1}_{\left\{\omega_{s}<0\right\}}+\mathbb{1}_{\left\{W_{s} \geqslant 0\right\}}\right) d W
\end{aligned}
$$

Question 9.20. Let W^{1} and W^{2} be two independent Brownian motions, and let $W=\left(W^{1}, W^{2}\right)$. Define the process X by $X_{t}=\ln \left(\left|W_{t}\right|^{2}\right)=\ln \left(\left(W_{t}^{1}\right)^{2}+\left(W_{t}^{2}\right)^{2}\right) \cdot$ Is X a martingale?
$W_{t}^{\prime} \rightarrow 1^{\text {st }}$ BM at the t

$$
\begin{aligned}
& W_{b}^{2} \rightarrow 2^{n d} \quad B M \text { at time } t \\
& W=\left(W^{\prime}, W^{2}\right) \quad|W|=\sqrt{\left(W^{\prime}\right)^{2}+\left(W^{2}\right)^{2}} \\
& X_{t}=\ln \left[\left(W_{t}^{\prime}\right)^{2}+\left(W_{t}^{2}\right)^{2}\right]
\end{aligned}
$$

Is x a mg?
It $n: \quad f(t, x, y)=\ln \left(x^{2}+y^{2}\right)$
Coupte $\partial_{x} f, \partial_{y} t, \partial_{x}^{2} \cdots \cdots$

$$
\begin{aligned}
& \text { Cempte } d X_{t}=d f\left(t, w_{t}, \omega_{t}^{2}\right) \quad d t \\
& \begin{array}{r}
\text { In }_{n}^{n} \\
\partial_{x f} d \omega_{t}^{\prime}+\partial_{y f} d \omega_{t}^{2}+\frac{1}{2}\left[\begin{array}{l}
\partial_{x}^{2} f d\left(\omega^{\prime}, \omega^{\prime}\right]+\partial_{y f}^{2}\left[d \omega_{2}^{2}, \omega^{2}\right. \\
\\
+2 \lambda \partial y f d\left[\omega^{\prime}, \omega^{2}\right]
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\approx \partial_{\Delta f} d w_{t}^{\prime} & +\partial_{y t} d w_{t}^{2}+ \\
& +\frac{1}{2}\left[\int_{x f}^{2}+\partial_{y f}^{2}\right] d t
\end{aligned}
$$

Can couphte \& clowk $\underbrace{\partial_{f}^{2} f+\partial_{y t}^{2}}=0 \quad\left(\right.$ Whan $\left.f(x, y)=\ln \left(x^{2}+y^{2}\right)\right)$

$$
\Rightarrow d x_{t}=\partial_{x f} d \omega_{t}^{\prime}+\partial_{y f} d \omega_{t}^{2} \Rightarrow x \text { is a } m g ? ?
$$

Clam: Evere thaugh thane ave no dt tems hene X is NOT a my!!
CReason:

10. Risk Neutral Pricing

Goal.

- Consider a market with a bank and one stock.
- The interest rate R_{t} is some adapted process.
- The stock price satisfies $d S_{t}=\alpha_{t} S_{t} d t+\sigma_{t} S_{t} d W_{t}$. (Here α, σ are adapted processes).
- Find the risk neutral measure and use it $\overline{\text { to }}$ price securities.

Definition 10.1. Let $D_{t}=\exp \left(-\int_{0}^{t} R_{s} d s\right)$ be the discount factor.
Remark 10.2. Note $\partial_{t} D=-R_{t} D_{t}$.

$$
\text { Reconll: } C_{t}=\text { crake in bark at time } t
$$

$$
{ }_{t} C_{t}=R_{t} C_{t}
$$

Theorem 10.4. The (unique) risk neutral measure is given by $d \tilde{\boldsymbol{P}}=\underline{Z_{T} d \boldsymbol{P},}$ where

$$
\rightarrow Z_{T}=\exp \left(-\int_{0}^{T} \underline{\theta_{t}} d W_{t}-\frac{1}{2} \int_{0}^{T} \underline{\theta_{t}^{2}} d t\right), \left\lvert\, \begin{array}{|l|l}
\theta_{t}=\frac{\alpha_{t}-R_{t}}{\sigma_{t}}
\end{array} a_{l}\right. \text { risk. }
$$

Theorem 10.5. Any security can be replicated. If a security pays V_{T} at time T, then the arbitrage free price at time t is

$$
\underline{V_{t}}=\frac{1}{\underline{D_{t}}} \tilde{\boldsymbol{E}}_{t}\left(\underline{D_{T} V_{T}}\right)=\xlongequal{\tilde{\boldsymbol{E}}_{t}}\left(\exp \left(\int_{t}^{T}-R_{s} d s\right) V_{T}\right)
$$

Remark 10.6. We will explain the notation $d \tilde{\boldsymbol{P}}=Z_{T} d \boldsymbol{P}$ and prove both the above theorems later.

$$
\text { Dis thee: RNa fouls } V_{n}=\frac{1}{D_{n}} \vec{E}_{n}\left(D_{N} V_{N}\right)
$$

C disc time version of

Definition 10.7. We say $\underset{\tilde{P}}{\tilde{\boldsymbol{P}}}$ is a risk neutral measure if:
(1) $\tilde{\boldsymbol{P}}$ is equivalent to \boldsymbol{P} (i.e. $\tilde{\boldsymbol{P}}(A)=0$ if and only if $\boldsymbol{P}(A)=0$)
(2) $D_{t} S_{t}$ is a $\tilde{\boldsymbol{P}}$ martingale.

Remark 10.8. As before, if $\tilde{\boldsymbol{P}}$ is a new measure, we use $\tilde{\boldsymbol{E}}$ to denote expectations with respect to $\tilde{\boldsymbol{P}}$ and $\tilde{\boldsymbol{E}}_{t}$ to denote conditional expectations.

Example 10.9. Fix $T>0$. Let Z_{T} be a \mathcal{F}_{T}-measurable random variable.

- Assume $Z_{T}>0$ and $\boldsymbol{E} Z_{T}=1$.
- Define $\tilde{\boldsymbol{P}}(A)=\boldsymbol{E}\left(\underline{Z_{T}} \underline{\mathbf{1}}_{A}\right)=\int_{A} \underline{Z}_{T} \underline{\underline{\boldsymbol{P}}}$. \quad Need $Z_{T}>0$ to encamp
- Can check $\tilde{\boldsymbol{E}} X=\boldsymbol{E}\left(Z_{T} X\right)$. That is $\int_{\Omega} X d \tilde{\boldsymbol{P}}=\int_{\Omega} X Z_{T} d \boldsymbol{P}$.
$P(A)=0 \Leftrightarrow \widetilde{P}(A)=0$
- Notation: Write $d \tilde{\boldsymbol{P}}=Z_{T} d \boldsymbol{P}$.

Lemma 10.10. Let $\underline{Z}_{t}=\boldsymbol{E}_{t} Z_{T}$. If X_{t} is \mathcal{F}_{t}-measurable, then $\tilde{\boldsymbol{E}}_{s} X_{t}=\frac{1}{Z_{s}} \boldsymbol{E}_{s}^{4}\left(Z_{t} X_{t}\right)$.

Proof. You will see this in the proof of the Girsanov theorem.

- RN Cinder.

Corollary 10.11. M is martingale under $\tilde{\boldsymbol{P}}$ if and only if $\underline{Z M}$ is a martingale under \boldsymbol{P}.

Q: $\hat{P}(A) \in[0,1]$

$$
\begin{aligned}
(\operatorname{lat}: \tilde{P} \tilde{P}(A) & =E\left(\mathbb{1}_{A} Z_{T}\right) \geqslant O\left(\because Z_{T}>0\right) \\
(2) \tilde{P}(A) & =E\left(\mathbb{H}_{A} Z_{T}\right) \leqslant E Z_{T}=1
\end{aligned}
$$

Q_{0} Ned $\tilde{P}(\Omega)=1$
1 Wole $\ddot{P}(\Omega)=E\left(\mathbb{1}_{\Omega} z_{T}\right)=E z_{T}=1$

Pap: $X_{t} \rightarrow F_{t}$ wers

$$
\begin{aligned}
& z_{t}=E_{t} z_{T} \\
& \text { Than } \tilde{E}_{s} X_{t}=\frac{1}{z_{s}} E_{s}\left(z_{t} X_{t}\right)
\end{aligned}
$$

Clame: M is a \hat{P} my $\Leftrightarrow Z M$ is a $P \mathrm{mg}$
(1) Soy $Z M$ is a $P-m y$

Compile $E_{S} M_{t}=\frac{1}{Z_{S}} E_{S}\left(Z_{t} M_{t}\right)$

$$
\begin{aligned}
& \left.=\frac{1}{z_{s}}\left(Z_{s} M_{s}\right) \quad \begin{array}{r}
\because Z M i a \\
P-m g
\end{array}\right) \\
& =M_{s} \Rightarrow M \text { is } a \not{\phi} \quad M g .
\end{aligned}
$$

