hat hame: Cts thene manet

$$
\binom{\text { Slok \& } \quad \operatorname{GBM}(\alpha, \sigma): d S=\alpha S_{t} d t+\sigma S_{t} d \omega_{t}}{\text { Bark Ind rade r: } d C_{t}=r C_{t} \quad\left(\Leftrightarrow C_{t}=C_{0} e^{r t}\right.}
$$

Manket
BoS. PDE:
Secaty $P_{\text {ugs }} V_{T}=g\left(S_{T}\right)$ at unduty T

Thur 1 If see can be app \& $X_{t}=\operatorname{AFP}=f\left(t, S_{t}\right)$
then of satisfies
(1) $\partial_{f f}+\tau \times a_{x} f+\frac{\sigma^{2} x^{2}}{2} \partial_{b} f=r f$
(2) $f(x, T)=g(x) \quad$ (Teminal cand)
(3) $f(0, t)=g(0) e^{-N(T-t)}$ (Bonday conl)

Thu 2: If f sathes (1) (2)\&(3)
thun the see can be nep
\& $X_{t}=$ wenth of R. Pout $=A F P=f\left(t, S_{t}\right)$
haot time: Proud (I) \rightarrow
x solf for if $\quad d X_{t}=\Delta_{t} d S_{t}+\left(W_{T} r\right)\left(x_{t}-\Delta_{t} S_{t}\right) d t$
$\mathbb{K}_{\text {von }} X=\underline{f\left(t, X_{t}\right)}$ is salf $f_{i n}$

Compete l_{t} by self fin $\}$ equate \& get BS. PDE

$$
\text { \& } d\left(f\left(t, s_{t}\right) \operatorname{bg} T_{10}^{n}\right.
$$

The 2: 4 some f salve the $B S P D E(\mathbb{1},(2),(3))$
Clam: $f\left(t, S_{t}\right)=$ neath of the R. Put
had t time: Lit $X_{t}=$ neath of a sal f fin Pout with

$$
X_{0}=f\left(0, S_{0}\right)
$$

Proof of Theorems. (withourdiseoveting).

$$
\begin{aligned}
& \quad \& \Delta_{t}=\partial_{x f}\left(t, S_{t}\right) \\
& d X_{t}= \Delta_{t} d S+r\left(X_{t}-\Delta_{t} S_{t}\right) d t \\
&==\left(\text { Wat to show } X_{t}=y_{t}\right) \\
& \text { let } Y_{t}= f\left(t, S_{t}\right) \quad \text { (If we han er } X_{t}=Y_{t} \text { Hen } X_{T}=Y_{T}=f\left(T, S_{T}\right)=g\left(S_{I}\right) \\
&=V_{T}
\end{aligned}
$$

Campite $d Y_{t}$ by Itio: $\quad d Y_{t}=7_{t f} d t+\cdots$
Then cimpline whe $d(y-x)$

$$
\begin{aligned}
& \begin{aligned}
& d\left(Y_{t}-X_{t}\right)=\left(\partial_{t f}+\alpha S_{x f}+\frac{\sigma^{2} S^{2} \partial^{2}}{2} \partial_{x \delta}\right.+o d \omega \\
&\left.-(\underline{\alpha-\tau}) \Delta_{t} S_{t}-\uparrow X_{t}\right) d t\left[\begin{array}{l}
\text { Rerall } \\
\partial_{x f}\left(t, S_{t}\right)=\Delta_{t}
\end{array}\right.
\end{aligned} \\
& =\underbrace{\left(\partial_{t b}+r \delta_{t} \partial_{x f}+\frac{r^{2} \delta^{2}}{2} \partial_{x}^{2}\right.}_{r b}-r X_{t}) d t \\
& \Rightarrow d(\underbrace{\left(Y_{t}-X_{t}\right.})=\left(r f_{\left(t, \delta_{t}\right.}\right)-r X_{t}) d t=r\left(Y_{t}-X_{t}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow Y_{t}-X_{t} & =\left(Y_{0}-X_{0}\right) e^{\text {rt }} \quad \begin{array}{l}
\text { Remider by choice } \\
X_{0}=f\left(0, S_{0}\right)=Y_{0}
\end{array} \\
& =0 \Rightarrow \text { dowe }
\end{aligned}
$$

Remark 8.12. The arbitrage free price does not depend on the mean return rate!

$$
\begin{aligned}
& d S_{t}=(x) S d t+\sigma S d w_{t} \\
& \text { sem net rule } \\
& \partial f+r \times \partial x f+\frac{\sigma^{2} x^{2}}{2} \partial_{x}^{2} f=\uparrow t \in a_{0}^{1}
\end{aligned}
$$

Question 8.13. Consider a European call with maturity T and strike K. The payoff is $V_{T}=\left(S_{T}-K\right)^{+}$. Our proof shows that the arbitrage free price at time $t \leqslant T$ is given by $V_{t}=\overline{\bar{c}\left(t, S_{t}\right) \text {, where } c \text { is defined by (8.5). The }}$ proof uses Itô's formula, which requires c to be twice differentiable in x; but this is clearly false at $t=T$. Is the proof still correct?

$$
g(x)=(x-k)^{\prime}
$$

Proposition 8.14 (Put call parity). Consider a European put and European call with the same strike K and maturity T
$\triangleright c\left(t, S_{t}\right)=A F P$ of call (given by (8.5))
$\triangleright p\left(t, S_{t}\right)=\overparen{A} \overrightarrow{F P}$ of put.
Then $c(t, x)-p(t, x)=x-K e^{-r(T-t)}$

$$
\begin{aligned}
& =\delta_{T}-k \leftarrow \text { Formal latuct. } \\
& \text { AFP of FiCo }=G_{t}-R e^{-r(T-t)} \\
& \Rightarrow c\left(t, s_{t}\right)-\phi\left(t, s_{t}\right)=S_{t}-k e^{-k(T-t)}
\end{aligned}
$$

8.3. The Greeks. Let $c(t, x)$ be the arbitrage free price of a European call with maturity \underline{T} and strike $\underline{\underline{K}}$ when the spot price is x. Recall
c Bis. Found.

$$
\underline{c(t, x)}=\underline{x} N\left(d_{+}\right)-K e^{-r \tau} N\left(d_{-}\right), \quad d_{ \pm} \stackrel{\text { def }}{=} \frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad \tau=T-t .
$$

Definition 8.15. The delta s $\partial_{x} c$.
Remark 8.16 (Delta hedging rule). $\Delta_{t}=\partial_{x} c\left(t, S_{t}\right)$.
Proposition 8.17. $\partial_{x} c=N\left(d_{+}\right)$

$$
N(y)=C D F \quad \text { of } \begin{array}{ccc}
y & \text { Daman } \\
y & -x^{2} / 2
\end{array}
$$

$$
=\int_{-\infty}^{y} e^{-x^{2 / 2}} \frac{d x}{\sqrt{2 \pi}}
$$

$$
\begin{aligned}
C & =x N\left(d_{+}\right)-k e^{-r \bar{L}} N\left(d_{-}\right) \\
\partial_{x} C & =N\left(d_{+}\right)+x N^{l}\left(d_{+}\right) \underbrace{1}_{\sigma \sqrt{t} x}-R e^{-r \tau} N^{\prime}\left(d_{-}\right) \frac{1}{2 \pi} \\
& =N\left(d_{+}\right)+x\left(\frac{e^{-d_{+}^{2} / 2}}{\sqrt{2 \pi}}\right) \frac{1}{\sigma \sqrt{\tau} x}-k e^{-\tau \tau}\left(\frac{e^{-d^{2} / 2}}{\sqrt{2 \pi}}\right) \frac{1}{\sigma \sqrt{\tau} x}
\end{aligned}
$$

trus ant to be O

$$
g t=N\left(d_{+}\right)
$$

Definition 8.18. The Gamma is $\partial_{x}^{2} c$ and is given by $\partial_{x}^{2} c=\frac{1}{x \sigma \sqrt{2 \pi \tau}} \exp \left(\frac{-d_{+}^{2}}{\underline{2}}\right) \cdot$
Definition 8.19. The Whet is $\partial_{t} c$, and is given by $\partial_{t} c=-r \underline{e_{-}^{-r \tau} N\left(d_{-}\right)-\frac{\sigma x}{2 \sqrt{\tau}}} N^{\prime}\left(d_{+}\right)$

$$
\partial_{x}^{2} c=\partial_{x}\left(\partial_{x} c\right)=\partial_{x}\left(N\left(d_{x}\right)\right)=N^{\prime}\left(d_{t}\right) \frac{1}{\nabla \sqrt{\tau} x}
$$

$$
c(t, x) \text { ac } t \rightarrow T
$$

Proposition 8.20. (1) c is increasing as a function of x. $3 \ll$
(2) c is convex as a function of x.
(3) c is decreasing as a function of t.
(1) \rightarrow Sime $\partial_{x} c=N\left(d_{+}\right)>0$
(2) $\partial_{x}^{2} C=$ Gama >0
(3) $\partial_{t} c=1$ hath <0

Remark 8.21. To properly hedge a short call, you always borrow from the bank. Moreover $\Delta_{T}=1$ if $S_{T}>K$, $\Delta_{T}=0$ if $S_{T}<K$.

$$
\text { Pat Pay off }=(x-k)^{+}
$$

$$
c\left(t, \delta_{t}\right)-\Delta_{t} \delta_{t}=c\left(t, \delta_{t}\right)-\partial_{x} c\left(t, s_{t}\right) S_{t}
$$

Put $x=S_{t}$

$$
\begin{aligned}
& \text { Cade Gulane }=c(t, x)-x \partial_{x} c(t, x) \\
& =x N\left(d_{f}\right)-K e^{-r \tau} N\left(d_{-}\right)-\pi N\left(d_{+}\right) \\
& =-K^{e^{-\tau \tau} N\left(d_{-}\right)}<0 \text {. }
\end{aligned}
$$

Q: What is Σ_{T} (for the R pant of Eur call)

$$
\Delta_{T}= \begin{cases}1 & s_{T} \geqslant k \\ 0 & s_{T} \leqslant k\end{cases}
$$

$$
\begin{aligned}
& x=\delta_{t} \quad \Delta_{t}=\partial_{x} c(t, x)=N\left(d_{t}\right) \\
& \tau=T-t \quad d_{+}=\frac{1}{r \sqrt{t}}\left(\ln \left(\frac{x}{k}\right)+\left(r+\frac{r^{2}}{2}\right)^{\tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { As } t \rightarrow T, \quad \tau \rightarrow 0 \\
& \lim _{t \rightarrow T} d_{t}= \begin{cases}+\infty & x>k \\
-\infty & x<k\end{cases} \\
& \Rightarrow \lim _{t \rightarrow T} \partial_{x}= \begin{cases}N(+\infty)=1 & x>k \\
N(-\infty)=0 & x<k\end{cases}
\end{aligned}
$$

Remark 8.22 (Delta neutral, Long Gamma). Say X_{0} is the spot price at time t.

- Short $\partial_{x} c\left(t, x_{0}\right)$ shares, and buy one call option valued at $c\left(t, x_{0}\right)$.
- Put $M=x_{0} \partial_{x} c\left(t, x_{0}\right)-c\left(t, x_{0}\right)$ in the bank.
- What is the portfolio value when if the stock price is $\underline{\underline{x} \text { (and we hold our position)? }}$
$\triangleright($ Delta neutral $)$ Portfolio value $=c(t, x)-$ tangent line.
\triangleright (Long gamma) By convexity, portfolio value is always non-negative.
Pot value when sat pice in $x=c(t, x)+x_{0} \partial_{x} c\left(t, x_{0}\right)-c\left(t, x_{0}\right)$

$$
=c(t, x)-\left[\left(x-x_{0}\right) \partial_{x} c\left(t, x_{0}\right)+c\left(t, x_{0}\right)\right]
$$

Pantfolio wlo: : $c(t, x)-$ tat line

9. Multi-dimensional Itô calculus

- Let X and Y be two Itô processes.
- $P=\left\{0=t_{1}<t_{1} \cdots<t_{n}=T\right\}$ is a partition of $[0, T]$.

Definition 9.1. The joint quadratic variation of X, Y, is defined by

$$
[X, Y]_{T}=\lim _{\|P\| \rightarrow 0} \sum_{i=0}^{n-1}\left(X_{t_{i+1}}-X_{t_{i}}\right)\left(Y_{t_{i+1}}-Y_{t_{i}}\right)
$$

Remark 9.2. The joint quadratic variation is sometimes written as $d[X, Y]_{t}=d X_{t} d \underline{Y}_{t}$.

$$
\begin{aligned}
& \text { Lemma 9.3. } \left.[X, Y, Y]_{T}\right]=\frac{1}{4}\left([X+Y, X+Y]_{T}-[X-Y, X-Y]_{T}\right) \\
& \text { Quof } x+y \quad \text { Qr af } x-y \text {. } \\
& (a+b)^{2}-(a-b)^{2}=4 a b \\
& \left.\begin{array}{l}
\Delta_{i} x=x_{t_{i+1}}-x_{t_{i}} \\
\Delta_{i} y=y^{2}
\end{array}\right\} \quad \Delta_{i} x \Delta_{i} y=\frac{1}{4}\left(\left[\begin{array}{c}
\left(\Delta_{i}(x+y)\right]^{2} \\
-\left[\Delta_{0}(x-y)\right.
\end{array}\right.\right. \\
& \Delta_{i} y=y_{t_{i+1}}^{t_{i+1}}-y_{t_{i}} \Delta_{i}\left(-\left[\Delta_{i}(x-y)\right]^{2}\right)
\end{aligned}
$$

