




8. Black Scholes Merton equation
8.1. Market setup and assumptions.
• Cash: simple interest rate r in a bank.
• Let ∆t be small. Cn ∆t be cash in bank at time n ∆t.
• Withdraw at time n ∆t and immediately re-deposit: C(n+1)∆t = (1 + r ∆t)Cn∆t.
• Set t = n∆t, send ∆t → 0: ∂tC = rC and Ct = C0ert.
• r is called the continuously compounded interest rate.
• Alternately: If a bank pays interest rate ρ after time T , then the equivalent continuously compounded interest

rate is r = 1
T ln(1 + ρ).



• Stock price: St+∆t = (1 + r ∆t)St + noise.
▷ Variance of noise should be proportional to ∆t.
▷ Variance of noise should be proportional to St.

• St+∆t − St = rSt ∆t + σSt(∆Wt).

Definition 8.1. A Geometric Brownian motion with parameters α, σ is defined by:
dSt = αSt dt + σSt dWt .

• α: Mean return rate (or percentage drift)
• σ: volatility (or percentage volatility)
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Market Assumptions.
• 1 stock, Price St, modelled by GBM(α, σ).
• Money market: Continuously compounded interest rate r.

▷ Ct = cash at time t = C0ert. (Or ∂tCt = rCt.)
▷ Borrowing and lending rate are both r.

• Frictionless (no transaction costs)
• Liquid (fractional quantities can be traded)



8.2. The Black, Sholes, Merton equation. Consider a security that pays VT = g(ST ) at maturity time T .

Theorem 8.3. If the security can be replicated, and f = f(t, x) is a function such that the wealth of the
replicating portfolio is given by Xt = f(t, St), then:

∂tf + rx∂xf + σ2x2

2 ∂2
xf − rf = 0 x > 0, t < T ,(8.1)

f(t, 0) = g(0)e−r(T −t) t ⩽ T ,(8.2)
f(T, x) = g(x) x ⩾ 0 .(8.3)

Theorem 8.4. Conversely, if f satisfies (8.1)–(8.3) then the security can be replicated, and Xt = f(t, St) is the
wealth of the replicating portfolio at any time t ⩽ T .

Remark 8.5. Wealth of replicating portfolio equals the arbitrage free price.

Remark 8.6. g(x) = (x − K)+ is a European call with strike K and maturity T .

Remark 8.7. g(x) = (K − x)+ is a European put with strike K and maturity T .



Proposition 8.8. A standard change of variables gives an explicit solution to (8.1)–(8.3):
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, τ = T − t .

Corollary 8.9. For European calls, g(x) = (x − K)+, and
(8.5) f(t, x) = c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))
where
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and

(8.7) N(x) def= 1√
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is the CDF of a standard normal variable.



Remark 8.10. Equation (8.1) is called a partial differential equation. In order to have a unique solution it needs:
(1) A terminal condition (this is equation (8.3)),
(2) A boundary condition at x = 0 (this is equation (8.2)),
(3) A boundary condition at infinity (not discussed yet).

▷ For put options, g(x) = (K − x)+, the boundary condition at infinity is
lim

x→∞
f(t, x) = 0 .

▷ For call options, g(x) = (x − K)+, the boundary condition at infinity is
lim

x→∞

�
f(t, x) − (x − Ke−r(T −t))

�
= 0 or f(t, x) ≈ (x − Ke−r(T −t)) as x → ∞ .



Definition 8.11. If Xt is the wealth of a self-financing portfolio then
dXt = ∆t dSt + r(Xt − ∆tSt) dt

for some adapted process ∆t (called the trading strategy).



Proof of Theorem 8.3.











Proof of Theorem 8.4.








