7. Review Problems

Problem 7.1 (From 2021 Midterm). Consider a discrete time market consisting of a bank and a stock. The bank pays interest rate $r=5 \%$ at every time period. Let S_{n} denote the stock price at time n, and we know $S_{0}=\$ 10$. The stock price changes according to the flip of a fair coin: if the coin lands heads the stock price increases by 10% (i.e. $S_{n+1}=1.1 S_{n}$), and if the coin lands tails the stock price decreases by 5% (i.e. $S_{n+1}=0.95 S_{n}$). An option pays the holder S_{N}^{3} at time $N=5$. Find the arbitrage free price of this option at time $n=1$. Also find the number of shares held in the replicating portfolio at time $n=0$. Round your final answer two decimal places. (I recommend rounding intermediate steps to three decimal places.)

$$
\begin{aligned}
& \begin{array}{l}
\text { Bank }=\$=5 \% \\
\text { Shack } 2=\$=\$ 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } V_{1}=A F P \text { at } N=1
\end{aligned}
$$

formla: $\quad V_{u}=\operatorname{AFP}$ at time $n=\frac{1}{D_{x}} \tilde{E}_{x}\left(D_{N} V_{N}\right)$

$$
\begin{aligned}
& D_{u}=(1+\tau)^{-u}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{p}=\frac{1+\tau-d}{u-d} \quad \tilde{q}=\frac{u-1+\mu}{u-d}
\end{aligned}
$$

Coutte: $N=5$
So \bar{x}^{5}
$\delta_{0} u^{4} d$

$$
\begin{aligned}
& V(H, H, H, H, *)=\frac{1}{1+r} v_{4}^{v}\left(S_{5}\right) \\
& =\frac{1}{1+r}\left(\hat{\phi} \delta_{0} r^{s}+\tilde{q}_{0} S_{0}, l^{4} d\right)
\end{aligned}
$$

Warls, bent too much "waten"
(Wilhat a comperter)

Bettor Strategy: From HW.
know if $V_{N}=f_{N}\left(S_{N}\right)$

$$
f_{5}(x)=\frac{\left.f_{5}\left(u_{x}\right)\right)^{\tilde{p}}+f_{5}(d x)^{q} q}{1+x}=\frac{(u x)^{\rho^{2}} \tilde{p}+(d x)^{3} \tilde{q}}{1+r}
$$

$\left(=S_{4}\right)$ \& counde.
Even shater metheal:
Knoro $\quad V_{n}=\frac{1}{D_{n}} \tilde{E}_{u}\left(D_{N} V_{N}\right)$
$V_{\text {sed }} D_{n} V_{u}$ is a mg inder P

$$
\begin{aligned}
& k_{\text {nono }} D_{n} V_{n}=\widetilde{E}_{n}\left(D_{n+1} V_{n+1}\right) \\
& D_{n}=(1+\tau)^{-n} \Rightarrow V_{n}=\frac{1}{1+\pi} \stackrel{E}{n}_{n}\left(V_{n+1}\right) \\
& V_{N-1}=\frac{1}{1+n} \widetilde{E}_{N-1}\left(V_{N}\right)=\frac{1}{1+n} \widetilde{E}_{N-1}\left(S_{N}^{3}\right)
\end{aligned}
$$

Let $x_{a}= \begin{cases}u & \text { it } n^{\text {th }} \text { coin is heads } \\ d & \text { it } n^{t h} \text { coin is toul. }\end{cases}$

$$
\begin{aligned}
& \operatorname{Tim}_{n+1} S_{n} S_{n} X_{n+1} \\
& \underbrace{}_{n} \underbrace{}_{i} \\
& F_{n}-\text { men }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1+\pi} \delta_{N-1}^{3} \hat{E}_{N ⿰ 丿 ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴} X_{N}^{3} \quad\left(\because S_{N-1} \text { is } F_{N-2}\right. \text { wats } \\
& \Rightarrow V_{N-1}=\delta_{N-1}^{3}\left(\frac{u^{3} p^{v}+d^{3} v}{1+\tau}\right) \\
& X_{N} \sin ^{2}{ }^{5} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(u^{3} \tilde{p}+d^{3} \tilde{q}\right)}{(1+r)^{2}} S_{N-2}^{3}\left(u^{3} p^{v}+d^{2} \tilde{q}\right) \\
& =\left(\frac{u^{3} \tilde{p}+q^{3} \tilde{q}^{2}}{1+r}\right)^{3} S_{N-2} \\
\therefore V_{1} & =V_{N-4}=\left(\frac{u^{3} p^{N}+d^{3} v^{v}}{1+\tau}\right)^{4} S_{1}^{3}
\end{aligned}
$$

Problem 7.2. If $0 \leqslant r \leqslant s \leqslant t$, find $\boldsymbol{E}\left(W_{s} W_{t}\right)$ and $\boldsymbol{E}\left(W_{r} W_{s} W_{t}\right)$.
Coupte $E\left(W_{s} W_{t}\right)=6 \Delta t=s$

$$
\text { Chach: } \begin{aligned}
E\left(\omega_{s} \omega_{t}\right) & =E\left(\omega_{s}\left(\omega_{t}-\omega_{s}\right)+\omega_{s}^{2}\right) \\
& =E \omega_{s} E\left(\omega_{t}-\omega_{s}\right)+E \omega_{s}^{2} \\
& =0+s\left(\omega_{s} \sim N(0, s)\right)
\end{aligned}
$$

Cluk 2: $E\left(\omega_{s} \omega_{t}\right)=E E_{s}\left(\omega_{s} \omega_{t}\right) \quad($ treer $)$

$$
\begin{aligned}
& =E(W_{S} \underset{\underbrace{}_{\text {Wg }}}{E_{S}} W_{t})=E\left(W_{S}, W_{s}\right)=S . \\
& \text { Campante } E\left(W_{r} \omega_{s} \omega_{t}\right)=E\left(E_{\tau} \omega_{\tau} \omega_{s} \omega_{t}\right) \\
& =E\left(\omega_{T} E_{r}\left(\omega_{S} \omega_{t}\right)\right) \\
& =E\left(W_{r} E_{r} \sqrt{E_{s}}\left(W_{s} W_{t}\right)\right) \\
& =E\left(W_{T} F_{r}\left(W_{s} F_{s} W_{t}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(W_{r} E_{r}\left(W_{s}^{2}\right)\right) \\
= & E\left(W_{r} E_{r}\left(W_{s}^{2}-s+s\right)\right) \\
= & E\left(W_{r}\left(W_{r}^{2}-r+s\right)\right) \\
= & E W_{r}^{3}+E W_{r}(s-r)=0 .
\end{aligned}
$$

Problem 7.3. Define the processes X, Y, Z by

$$
X_{t}=\int_{0}^{W_{t}} e^{-s^{2}} d s, Y_{t}=\exp \left(\int_{0}^{t} W_{s} d s\right), \quad Z_{t}=t X_{t}^{2}
$$

Decompose each of these processes as the sum of a martingale and a process of finite first variation. What is the quadratic variation of each of these processes?

Tho decompose X:

$$
\begin{aligned}
& \text { Write } X_{t}=f\left(t, W_{t}\right) \text { whence } f(t, x)=\int_{0}^{x} e^{-s^{2}} d s \\
& \text { Nod } \partial_{t f}, \partial_{x f} f, \partial_{x}^{2} \mid \text { to exit }
\end{aligned}
$$

Nae $\partial_{t f}, \partial_{x f}, \partial_{x}^{2} f$ to exit

$$
\begin{aligned}
& \partial_{t f}=O_{2}^{2} \\
& \partial_{x f}=e^{-x^{2}} \quad\left(F T C ; \partial_{x} \int_{0}^{x} g(s) d s=g(x)\right), ~
\end{aligned} \quad\left(\begin{array}{l}
1 \\
\end{array}\right.
$$

$$
\begin{aligned}
& \partial_{x}^{2} f=e^{-x^{2}}(-2 x) \\
& \text { Itog } d x=\| f\left(t, \omega_{t}\right)=\partial_{t f} d t+\partial_{a f} d \omega_{t}+\frac{1}{2} \partial_{x}^{2} f d[\omega, \omega] \\
& =0+e^{-\omega_{t}^{2}} d_{t}+\frac{1}{2}\left(e^{-\omega_{t}^{2}}\left(-2 \omega_{t}\right)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow X_{t}=X_{0}+\int_{0}^{t} e^{-\omega_{s}^{2}} d W_{s}-\int_{0}^{t} \omega_{s} e^{-W_{s}^{2}} d s
\end{aligned}
$$

Reveralu. \rightarrow Ito in ts are $\mathrm{Mg}_{\mathrm{S}}^{\prime}$
\& Riense int ane fontel 1^{4} var.
$y_{t}=\operatorname{eap}\left(\int_{0}^{t} \omega_{s} d_{s}\right)$ Find Ito demand.

$$
Y_{t}=f_{s}\left(t, w_{t}\right) \quad \& \quad f(t, x)=\left\{\begin{array}{l}
\exp \left(\int_{0}^{t} w_{s} d_{s}\right) \\
\exp \left(f_{0}^{t} x d_{s}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \partial_{x} f_{f}(t, x)=0 \\
& \partial_{x}^{2} f(t, x)=0 \\
& \partial_{t f} f_{f}(t, x)=\exp \left(\int_{0}^{t} w_{s} d_{s}\right) \sqrt{d} \int_{d t_{0}^{t}}^{t} w_{s} d s \\
& =f(t, x) \quad w_{t}
\end{aligned}
$$

$$
\begin{array}{r}
=f\left(t, w_{t}\right) \cdot \omega_{t} d t=Y_{t} w_{t} d t \\
\Rightarrow Y_{t}=Y_{0}+\underbrace{\int_{0}^{t} Y_{s} w_{s} d s}_{\text {Finle }^{s t} \text { wor }}+\underbrace{0}_{M_{g}}
\end{array}
$$

Problem 7.4. Define the processes X, Y by

Given $0 \leqslant s<t$, compute $\boldsymbol{E} X_{t}, \boldsymbol{E} Y_{t}, \underbrace{\boldsymbol{E}_{s} X_{t}}, \boldsymbol{E}_{s} Y_{t}$.

$$
\begin{aligned}
E X=E & =\int_{t}^{t} W_{s} d s \\
E & =\int_{0}^{t}\left(E W_{b}\right) d s=0 \\
E_{s} X_{t} & =E_{s} \int_{0}^{0} W_{r} d r=\int_{0}^{t} E_{s} W_{r} d r \\
& =\int_{0}^{s} E_{s} W_{r} d r+\int_{s}^{t} E_{S} W_{r} d r
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rules: } \\
& \rightarrow E \int_{0}^{\text {Rules }} b_{s} d s=\int_{0}^{b} E_{s} b_{s} d s \\
& \begin{array}{c}
E_{\delta} \int_{0}^{t} b_{r} d r=\int_{0}^{0} E_{s}^{t} b_{r} d r \\
E_{s} \int_{0}^{t} \sigma_{r} d D_{\tau}=\int_{0}^{s} r_{T} d W_{r}
\end{array} \\
& \text { Ito int are ing's. }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\delta} W_{r} d r+\int_{s}^{t} W_{s} d r \\
& =\int_{0}^{s} W_{r} d r+W_{s}(t-s) \\
E \int_{0}^{t} W_{r} d W_{r} & =E \int_{0}^{0} W_{r} d\left(\omega_{r}=0 \quad(M g)\right. \\
E_{S} \int_{0}^{t} W_{r} d W_{r} & =\int_{0}^{s} W_{r} d \omega_{r} \quad(M g)
\end{aligned}
$$

Problem 7.5. Let $M_{t}=\int_{0}^{t} W_{s} d W_{s}$. Find a function f such that

$$
\mathcal{E}(t) \stackrel{\text { def }}{=} \exp \left(M_{t}-\int_{0}^{t} f\left(s, W_{s}\right) d s\right)
$$

is a martingale.

Problem 7.6. Suppose $\sigma=\sigma_{t}$ is a deterministic (i.e. non-random) process, and M is a martingale such that $\mid d[M, M]_{t}=\sigma_{t}^{2} d t$.

$$
X_{t}=\int_{0}^{t} \sigma_{u} d W_{u}
$$

(1) Given $\lambda, s, t \in \mathbb{R}$ with $0 \leqslant s<t$ compute $\boldsymbol{E} e^{\lambda M_{t}}$ and $\boldsymbol{E}_{s} e^{\lambda M_{t}-M_{s}}$
(2) If $r \leqslant s$ compute $\boldsymbol{E} \exp \left(\lambda M_{r}+\mu\left(M_{t}-M_{s}\right)\right)$.
(3) What is the joint distribution of $\left(M_{r}, M_{t}-M_{s}\right)$?
(4) (Lévy's criterion) If $d[M, M]_{t}=d t$, then show that M is a standard Brownian motion.

Problem 7.7. Define the process X, Y by

Find a formula for $\boldsymbol{E} X_{t}^{n}$ and $\boldsymbol{E} Y_{t}^{n}$ for any $n \in \mathbb{N}$.
Clam: Both X \& Y_{t} me norman!
Can fond $E X_{t}^{n} \& E Y_{t}^{\eta}$ if I know $E X_{t} \& E X_{t}^{2}$ $\& E Y_{t} \& E Y_{t}^{2}$
Find $E X_{t} \& E X_{t}^{2}:$

$$
\begin{aligned}
& E X_{t}=E \int_{0}^{t} s d W_{s}=0 \\
& E X_{t}^{2}=E\left(\int_{0}^{t} s d w_{s}\right)^{2}=E \int_{0}^{t} s^{2} d s=\frac{t^{3}}{3} \\
& \text { for } Y_{1} \\
& E Y_{t}=E\left(\int_{0}^{t} w_{s} d s\right)=\int_{0}^{t} E W_{s} d s=0 \\
& E Y_{t}^{2}=E\left(\int_{0}^{t} W_{s} d s\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =E\left[\left(\int_{0}^{t} w_{s} d s\right)\left(\int_{0}^{t} w_{t} d s\right)\right] \\
& =E\left[\left(\int_{0}^{t} w_{s} d s\right)\left(\int_{0}^{t} w_{r} d r\right)\right]_{s}^{t} \\
& =E \int_{s=0}^{t} \int_{r=0}^{t} w_{s} w_{r} d s d r=\int_{s=0}^{t} \int_{r=0}^{t} E\left(w_{s} w_{r}\right) d s d r
\end{aligned}
$$

$$
=\int_{s=0}^{t} \int_{\tau=0}^{t}(s \wedge r) d s d \tau \& \text { campute. }
$$

Why are X \& Y mand: Not wandon E Nound

$$
X_{t}=\int_{0}^{t} s d w_{s}=\lim \underbrace{t_{b}}_{\text {samn of ind nambs. }}\left(w_{\left.b_{k+1}-w_{t_{b}}\right)}^{t} \rightarrow N_{\text {omm }}\right. \text {. }
$$

Womal.
u
n

Problem 7.8. Let $M_{t}=\int_{0}^{t} W_{s} d W_{s}$. For $s<t$, is $M_{t}-M_{s}$ independent of \mathcal{F}_{s} ? Justify.

Problem 7.9. Determine whether the following identities are true or false, and justify your answer.
(1) $e^{2 t} \sin \left(2 W_{t}\right)=2 \int_{0}^{t} e^{2 s} \cos \left(2 W_{s}\right) d W_{s}$.
(2) $\left|W_{t}\right|=\int_{0}^{t} \operatorname{sign}\left(W_{s}\right) d W_{s}$. (Recall $\operatorname{sign}(x)=1$ if $x>0, \operatorname{sign}(x)=-1$ if $x<0$ and $\operatorname{sign}(x)=0$ if $x=0$.)

