Servir mag: X = X + B + M (cts adapted) Recall 5 $B_2 = \int b_s ds$, $M_z = \int \tau_s dW_s$ ma Its int. Notation: $dX_t = b_t dt + \nabla_t dW_t$ Notation: $\int D_z dX_z = \int D_z b_z ds + \int D_z \nabla_z dW_s$.

Theorem (Itô's formula, Theorem 6.29). If $f \in C^{1,2}$, then $df(t, X_t) = \partial_t f(t, X_t) dt + \partial_x f(t, X_t) dX_t + \frac{1}{2} \partial_x^2 f(t, X_t) d[X, X]_t$ Remark 6.37. If $\underline{dX_t} = \underline{b_t dt} + \sigma_t \underline{dW_t}$ then $\widetilde{df(t, X_t)} = \left(\partial_t f(t, X_t) + b_t \partial_x f(t, X_t) + \frac{1}{2} \sigma_t^2 \partial_x^2 f(t, X_t)\right) dt + \partial_x f(t, X_t) \sigma_t dW_t.$ $dX_{t} = b_{t} dt + (\overline{r}_{t}) | U$ means: $f = f(t, \pi)$ -> dif crists k is dis dif & dir f exist & are dis

Intuition behind Itô's formula. $\begin{aligned}
\Pi_{0} & \longleftrightarrow & f(T, X_{T}) - f(0, X_{0}) = \int_{0}^{T} \partial_{\xi} f(t, X_{1}) dt + \int_{0}^{T} \chi_{0} f(t, X_{1}) dX_{1} \\
& + \frac{1}{2} \int_{0}^{T} \partial_{x}^{2} f(t, X_{1}) dJX_{1} \chi_{1} \\
Gauside & grimfle (100 : f(6, x)) = f(x) \\
& X_{1} = W_{1} \\
\hline
H_{0} & \Longleftrightarrow & f(W_{T}) - f(W_{0}) = \int_{0}^{T} \partial_{x} f(W_{1}) dW_{1} + \frac{1}{2} \int_{0}^{T} \partial_{x} f(W_{1}) dt.
\end{aligned}$

Intuition behind Itô's formula.

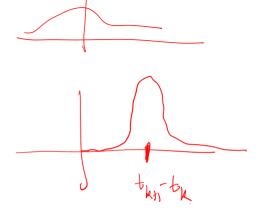
Watation: Wante 2k = k $f(x+h) - f(x) = h f(x) + \frac{h}{2} f(x)$ laglors hearn o $T = t_{11}$ $f(w_{T}) - f(w_{D}) = \sum_{n=1}^{n-1} f(w_{t_{n+1}}) - f(w_{t_{n+1}})$

 $\frac{\operatorname{Taylor}}{\operatorname{K-D}} \xrightarrow{\mathcal{W}} \frac{1}{2} \left(\left(\mathcal{W}_{t_{k}} \right) \left(\left(\mathcal{W}_{t_{k+1}} - \mathcal{W}_{t_{k}} \right) + \frac{1}{2} \left(\left(\mathcal{W}_{t_{k}} \right) \left(\left(\mathcal{W}_{t_{k+1}} - \mathcal{W}_{t_{k}} \right) + \frac{1}{2} \left(\left(\mathcal{W}_{t_{k}} \right) \left(\left(\mathcal{W}_{t_{k+1}} - \mathcal{W}_{t_{k}} \right) + \frac{1}{2} \left(\left(\mathcal{W}_{t_{k}} \right) \left(\left(\mathcal{W}_{t_{k+1}} - \mathcal{W}_{t_{k}} \right) + \frac{1}{2} \left(\left(\mathcal{W}_{t_{k}} \right) \right) \right) \right)$ $+\frac{1}{2}\sum_{k=0}^{k-1} \binom{n}{k} \binom{n}{k$ $A_{k}W = W_{t_{k+1}} - W_{t_{k-1}} = \sum_{k=0}^{n-1} f(W_{t_{k}}) A_{k}W$ W f'(wf) dwf $f'(W_{\ell}) df$ 1200 >I0 (1

Know

 $\Delta_k W \sim N(0, t_k, -t_k)$

 $(\Delta_k W) \approx N(0, t_{k+1} - t_k)$ $V_{er}(A_k) = 2(t_{k+1} - t_k)^{\prime}$



Example 6.38. Find the quadratic variation of W_t^2 .

haut fime

Example 6.39. Find $\int_0^t W_s \, dW_s$. Methy: hours a for f = f(t, x)IWz d Wz sa flut $d f(t, W_t)$ & integrite. $d f(t, W_t) = 2t dt +$ $AW_{t} + \frac{1}{2}\chi_{t}$ dt Wole (ZF hone K(b, x) 5

 $) = \partial \left(f(t, W_t) \right)$ $= \frac{2}{2} \frac{1}{6} \frac{$ O + Wy duy + 1 dt $\int W_t dW_t t$ $\Rightarrow W$ $\Rightarrow \int W_{t} dW_{t} = W_{T}^{2} - T_{T}$

Example 6.40. Let $M_t = W_t$, and $N_t = W_t^2 - t$. \triangleright We know M, N are martingales. \triangleright Is MN a martingale?

Off
$$D \rightarrow M_{t}N_{t} = W_{t}^{2} - tW_{t}$$
 & Compto $E_{s}()$
 $E_{s}(W_{t}^{3}) = E_{s}((W_{t} - W_{s}tW_{s}^{3}))$ & expert & offer
Bolfer way: Use Ito:
Comparise $d(M_{t}N_{t}) = d(W_{t}^{3} - tW_{t})$
Chone $f(b, x) = x^{3} - bx$

 $\partial_t d = -x$ [Ito: $d(w_b^3 - bw_t) = \partial_t dt + \partial_t dw + \frac{1}{2} \partial_t d(w_b)$] $\vartheta_x = 3x^2 - t$ $= -W_{t}dt + (3W_{t}^{2}-t)dW + \frac{1}{2}6W_{t}dt$ $\partial_x^2 = 6x$ $= \left(\frac{3W_{t} - W_{t}}{t} \right) \left(\frac{1}{t} + \left(\frac{3W_{t}^{2} - t}{t} \right) \left(\frac{1}{t} \right) \right)$ Coeff of de +0 > MN can NOT le a mg.

Example 6.41. Let $X_t = t \sin(W_t)$. Is $X_t^2 - [X, X]_t$ a martingale?

Example 6.42. Say $dM_t = \sigma_t dW_t$. Show that $M^2 - [M, M]$ is a martingale. $(M \rightarrow mg)$ Chiefe $\gamma = M_{t}^{2} - [M, M]$ $f(t_x) = \frac{x}{2} - [m_m]_t$ $(Revall : [M, M] = \int \overline{E}^2 dS$ d[M,M] = (E) ri dt 3 dm $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{1}{2}$ H_0 $((G,M) = 2_{f}(G+)$

 $= 2M_{t} \tau_{t} dW_{t}$ db term -> is a my

Theorem 6.43 (Lévy's criterion). Let M be a continuous martingale such that $M_0 = 0$ and $[M, M]_t = t$. Then M is a Brownian motion.

Knows
$$W \rightarrow I is ds$$

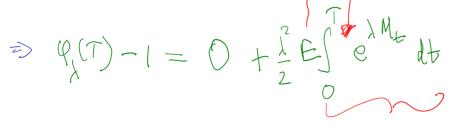
(2) is a mag
(3) $d[W,W]_t = dt$
J
I.e. $M_t - M_s \sim N(0, t-s)$
 $k M_t - M_s$ is involved if f_s .

1

() Show $M_{t} \sim N(0, t)$ Will show $MGF(M_{\perp}) = MGF(N(0, t))$ $\frac{4}{2}(t) = E e^{\lambda M_t} \qquad (X is a RV.)$ $\lim_{t \to \infty} (\varphi = MGF e^{\lambda X})$ $\frac{4}{2}(\frac{4}{2}) = E e^{\frac{1}{2}\lambda}$ $\frac{4}{2}(N(0,t)) = e^{\frac{1}{2}\lambda}$

Apply It's to $A(e^{\lambda M_t})$ is (hore $f(t, z) = e^{\lambda z}$ $\Rightarrow d(e^{\lambda M_b}) = \frac{2}{2\xi} dt + \frac{2}{2\xi} dM +$ oxf = 1 exx $+ \frac{1}{2} \partial_{x}^{2} d[m,m] = \lambda^{2} \lambda^{x}$ $= O + \lambda e^{\lambda M_{t}} dM_{t} + \frac{\lambda^{2}}{2} e^{\lambda M_{t}} dt \qquad (\text{linen } dCM, M] = dt)$ $\Rightarrow Ee^{\lambda M_T} - (=Ef^{\lambda e^{\lambda M_t}} dM_t + \frac{\lambda^2}{2} Ef^{\lambda e^{\lambda M_t}} dt$

 $dM = \sigma AW_{t}$ $= E \int \lambda e^{\lambda M_{t}} T_{t} dW_{t}$ $= O \quad (\circ: T_{t} \delta int is a M_{t}).$



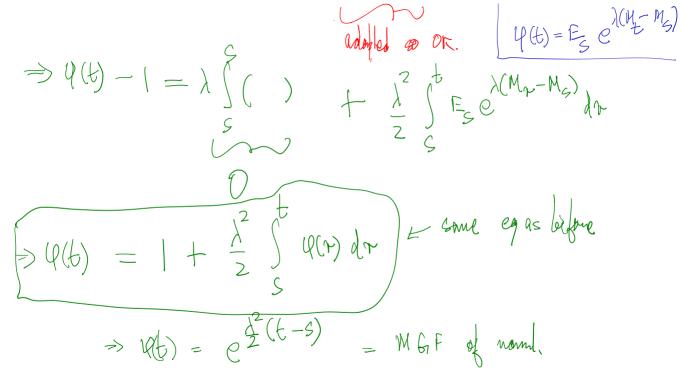
 $= \frac{\lambda^2}{2} \int \frac{F}{F} \frac{e^{\lambda m_t}}{q} dt$ $(f_{1}(T) - 1) = \frac{\lambda^{2}}{2} \int_{0}^{T} (f_{1}(t)) dt$ different T & $q'_{\lambda}(T) = \frac{\lambda^2}{2} q(T)$ $\Rightarrow (f_{1}(T)) = (f_{1}(0)) \cdot \exp\left(\frac{\lambda^{2}}{2}T\right)$

$$\Rightarrow \Psi_{t}(T) = e^{\frac{1}{2}T} = M_{GFF} e_{t}^{2} m_{oundel}!!$$

$$\Rightarrow M_{t} \sim N(0, t).$$
Twy same strongen & show $M_{t} - M_{s} \sim N(0, t - s)$

$$2 M_{t} - M_{s} is mod g E_{s}.$$
hat $\Psi(t) = E_{s} e^{\lambda(M_{b} - M_{s})}$

 $(\operatorname{ound}_{\mathsf{n}\mathsf{fo}} \mathfrak{p}: (\mathsf{I}\mathfrak{b} \Rightarrow)$ $d(e^{\mathsf{I}}\mathfrak{M}_{\mathsf{f}}) = \lambda e^{\lambda \mathfrak{M}_{\mathsf{f}}} d\mathfrak{M}_{\mathsf{f}} + \frac{\lambda^{2}}{2} e^{\lambda \mathfrak{M}_{\mathsf{f}}} d\mathsf{f}$ 'hat from s to t: $e^{\lambda M_b} - \frac{\lambda M_s}{e} = \lambda \int e^{\lambda M_r} dM_r + \frac{\lambda}{z} \int e^{\lambda M_r} dr$ $= E_{g}e^{\lambda(M_{t}-M_{g})} - 1 = \lambda E_{g}fe^{\lambda(M_{t}-M_{c})} M_{t} + \lambda E_{g}fe^{\lambda(M_{t}-M_{c})} M_{t}$



 $\Rightarrow E_{g} e^{\lambda (M_{t} - M_{g})} = \rho^{\lambda_{z}^{2} (t-g)}$ $= E E_{s} c^{\lambda(M_{t}-M_{t})} = e^{\int_{z}^{2} (t-s)}$ $\Rightarrow E e^{\lambda(M_{t}-M_{c})}$ MGF of N(0,t-s). Indep: X & Y and indep $(=) E e^{i X + \frac{1}{4} i Y} = E e^{i X} E e^{i Y}$ IL X ie & meas

 $+ \lambda (M_{t} - M_{s})$ \mathbb{M} = E (MX 2 (My-My) A S (My e 2 (My-My) 5, = E $E_{p} e^{\lambda(M_{t} - M_{s})}$ [] X2(6-5) S MGF(X) , Indep