Rouinder: O.H. Today 3:30 & Tomorrow 12:00 (Zoory) hart time : Brownian Motion Cts time RW $W_{1} = BM$  at time to \_\_\_\_\_ han ()  $W_{t} - W_{c} \sim N(0, t-\epsilon)$ 2 W<sub>h</sub> - W<sub>c</sub> is invelop of F<sub>s</sub>

## 5.4. Martingales.

 $\sim$ 

**Definition 5.11.** An adapted process M is a martingale if for every  $0 \le s \le t$ , we have  $E_s M_t = M_s / M_s$ 

*Remark* 5.12. As with discrete time, a martingale is a fair game: stopping based on information available today will not change your expected return.

**Proposition 5.13.** Brownian motion is a martingale. Proof. Want to show  $E_{6}W_{7} = W_{6}$  $E_{SW_b} = E_{S}(W_t - W_s + W_s) = E_{S}(W_t - W_s) + E_{SW_s}$ E memb  $=E(W_{t}-W_{c})+W_{c}$  $= W_{S}$ 

6. Stochastic Integration Partition. 6.1. Motivation. • Hold  $b_t$  shares of a stock with price  $S_t$ . • Only trade at times  $P = \{0 = t_1 < \dots, t_n = T\}$ • Net gain/loss from changes in stock price:  $\sum_{k=1}^{\infty} b_{t_k} \Delta_k S$ , where  $\Delta_k S = S_{t_{k+1}} - S_{t_k}$ . ٠  $\triangleright$  The  $\xi_k \in [t_k, t_{k+1}]$  can be chosen arbitrarily.  $\triangleright$  Only works if the *first variation* of S is finite. False for most stochastic processes. M.M.M.

6.2. First Variation.

**Proposition 6.3.**  $EV_{[0,T]}W = \infty$ 

**Definition 6.1.** For any process X, define the *first variation* by

$$V_{[0,T]}(\underline{X}) \stackrel{\text{def}}{=} \lim_{\|\underline{P}\| \to 0} \sum_{k=0}^{n-1} |\underline{\Delta}_k X| \stackrel{\text{def}}{=} \lim_{\|P\| \to 0} \sum_{k=0}^{n-1} |X_{t_{k+1}} - X_{t_k}|$$

Remark 6.2. If X(t) is a differentiable function of t then  $V_{[0,T]}X < \infty$ .

SFV W = ling EZ (4W)

Remark 6.4. In fact,  $V_{[0,T]}W = \infty$  almost surely. Brownian motion does not have finite first variation. Remark 6.5. The Riemann-Stieltjes integral  $\int_0^T \underline{b}_{\underline{t}} d\underline{W}_{\underline{t}}$  does not exist.  $\Delta_{\underline{t}} W = W_{\underline{t}} - W_{\underline{t}} + U_{\underline{t}} + U_{\underline{t$ 

Say 
$$P \rightarrow "uufom"$$
  
 $\int H(\rightarrow 0)$   
 $\int H(+) + H$   
 $\int H(+) + H$ 

 $1.0. \quad \text{sag} \quad t_{k+1} - t_k = \frac{T}{4}$  $E[\Delta_{k}W] = E[W_{t_{kH}} - W_{t_{k}}] = E[N(0, t_{kH} - t_{k})]$  $= E[N(0, T_{n})] = E[\sqrt{T_{n}}N(0, 1)]$  $= \left( \frac{T}{4} \in N(0, 1) \right)$ Some finte constat.

as EV W = lim ZE AW DT HAND ROUND  $= \lim_{k \to 0} \frac{M+1}{k} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} E[N(0,1)]$ = lim Juit E|N(0,1)| - 300 11P1-50

6.3. Quadratic Variation.  $M = \lim_{M \to 0} 2 M_{H} - M_{H}$ Definition 6.6. If M is a continuous time adapted process, define  $[M, M]_T = \lim_{\|P\| \to 0} \sum_{t=0}^{n-1} (M_{t_{k+1}} - M_{t_k})^2 = \lim_{\|P\| \to 0} \sum_{k=0}^{n-1} (\Delta_k M)^2.$ **Proposition 6.7.** For continuous processes the following hold:  $\rightarrow$ (1) Finite first variation implies the quadratic variation is 0 (2) Finite (non-zero) quadratic variation implies the first variation is infinite. M Review the astor (Important)

**Proposition 6.8.**  $[W, W]_T = T$  almost surely. Remark 6.9. For use in the proof:  $\operatorname{Var}(\mathcal{N}(0,\sigma^2)^2) = \mathbf{E}\mathcal{N}(0,\sigma^2)^4 - (\mathbf{E}\mathcal{N}(0,\sigma^2)^2)^2 = 2\sigma^2$ . Proof:. 21-4 - 124  $E N(0, r^2)^2 = r^2$  $[w, w] = \lim_{W \to 0} \sum (S_{x}w)^{2}$ Assure unform nesh NTS - T AISN

(1)  $\lim_{N \to 0} E \Sigma(O_k W)^2$ WAvoro  $\begin{array}{c} \textcircled{2} \\ \swarrow \\ \lVert P \rVert \rightarrow 0 \end{array} \quad \bigvee_{\mathcal{W}} \left( \boxed{2} \left( \measuredangle_{\mathcal{W}} \\ \end{matrix} \\ \swarrow \\ \end{matrix} \right)^{2} \right) =$ Check  $E Z (A_k W)^2 = Z E N(0, t_k, t_k)$ 

 $\approx 2(t_{kH}-t_{k}) = T$  $(2) \operatorname{Var}\left(\frac{2}{k}(\mathcal{A}_{k}W)^{2}\right) = \frac{n-1}{2} \operatorname{Var}\left(\mathcal{A}_{k}W\right)^{2} \left(\operatorname{by indep}\right)$  $= \sum_{k=0}^{n-1} V_{0k} \left( N(0, t_{k+1} - t_k)^2 \right)$  $= \sum_{k=0}^{4-1} \lim_{k \to 0} \left( N(0, \frac{1}{n})^2 \right) = \sum_{k=0}^{4-1} 2 \frac{\tau^2}{y^2}$ 

 $\frac{2T}{n} \xrightarrow{|P| \rightarrow 0} C$ 



**Proposition 6.10.**  $W_t^2 - [W, W]_t$  is a martingale.

Check:  $E_s(W_b^2 - [W, W]_t) \xrightarrow{Want} W_s^2 - [W, W]_s$  $E_{s}(W_{t}^{2}-[W,W]_{t}) = E_{s}(W_{t}^{2}-t)$  $= E_c W_L^2 - t$  $= E_{s} \left( W_{f} - W_{s} + W_{s} \right)^{s} - t$  $E_{s}(W_{t}-W_{s})^{2}+W_{s}^{2}+2(W_{t}-W_{s})W_{s}) - t$ 

 $\left(W_{t}-W_{s}^{\gamma}N(0,t-0)\right) = \left(W_{t}-W_{s}^{\gamma}\right) + W_{s}^{2} + 2E_{s}\left(W_{t}-W_{s}\right)W_{s}^{\gamma} - t$  $= k - 5 + W_{s}^{2} + 2W_{s} E_{s}(W_{t} - W_{s}) - \frac{1}{2}$  $= W_{z}^{2} - s = W_{z}^{2} - [W, W]_{z}.$ [M,W]is

**Theorem 6.11.** Let M be a continuous martingale.  $\neq (1) \ \mathbf{E}M_t^2 < \infty \text{ if and only if } \mathbf{E}[M, M]_t < \infty.$ (2) In this case  $M_t^2 - [M, M]_t$  is a continuous martingale. (3) Conversely, if  $M_t^2 - \overline{A_t}$  is a martingale for any continuous, increasing process A such that  $A_0 = 0$ , then we must have  $\overline{A_t} = [\overline{M}, M]_t$ .

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.

Remark 6.13. If X has finite first variation, then  $|X_{t+\delta t} - X_t| \approx O(\delta t)$ . Remark 6.14. If X has finite quadratic variation, then  $|X_{t+\delta t} - X_t| \approx O(\sqrt{\delta t}) \gg O(\delta t)$ .

Son X is diff.  $\chi - \chi ($ Finle QV: 1X ttot, -X 2 ~

## 6.4. Itô Integrals.

- $D_t = D(t)$  some adapted process (position on an asset).
- $P = \{\overline{0} = t_0 < t_1 < \cdots\}$  increasing sequence of times.
- $||P|| = \max_i t_{i+1} t_i$ , and  $\Delta_i X = X_{t_{i+1}} X_{t_i}$ .
- W : standard Brownian motion.

**Definition 6.15.** The *Itô Integral* of D with respect to Brownian motion is defined by

 $I_T = \int_0^T D_t dW_t = \lim_{\|P\| \to 0} I_P(T).$ 

Remark 6.16. Suppose for simplicity  $T = t_n$ .

(1) Riemann integrals:  $\lim_{\|P\|\to 0} \sum D_{\xi_i} \Delta_i W \text{ exists, for any } \xi_i \in [\underline{t_i}, t_{i+1}].$ 

(2) Itô integrals: Need  $\xi_i = t_i$  for the limit to exist.

**Theorem 6.17.** If 
$$\mathbf{E} \int_{0}^{T} \underline{D}_{t}^{2} dt < \infty$$
 fills, then:  

$$\int_{0}^{T} \underline{D}_{t}^{2} dt \longrightarrow \mathcal{R} \quad \text{inf}$$

$$\begin{pmatrix} (1) \ I_{T} = \lim_{\|P\| \to 0} I_{P}(T) \text{ exists a.s., and } \mathbf{E}I(T)^{2} < \infty. \\ (2) \ The \text{ process } I_{T} \text{ is a martingale: } \mathbf{E}_{s}I_{t} = \mathbf{E}_{s} \int_{0}^{t} \underline{D}_{r} dW_{r} = \int_{0}^{s} D_{r} dW_{r} = I_{s} \\ (3) \ [I, I]_{T} = \int_{0}^{T} D_{t}^{2} dt \text{ a.s.} \\ \text{Remark 6.18. If we only had } \int_{0}^{T} D_{t}^{2} dt < \infty \text{ a.s., then } I(T) = \lim_{\|P\| \to 0} I_{P}(T) \text{ still exists, and is finite a.s. But it may not be a martingale (it's a local martingale).}$$



**Corollary 6.19** (Itô isometry).  $\boldsymbol{E}\left(\int_{0}^{T} D_{t} dW_{t}\right)^{2} = \boldsymbol{E}\int_{0}^{T} D_{t}^{2} dt$ Proof. Rienamn Int Induction  $(I_T = \int D_s dW_s$ The style  $[I,T]_T = \int_T^2 ds$ . (2) Know  $J_{j}^{2} - (J_{j}J_{j})$  is a mg.

 $(3) \Rightarrow f_{1}(I_{t}^{2} - [I_{t}]_{t}) = f_{0}(I_{t}^{2} - [I_{t}]_{t})$  $= f_0^2 - [F_0, F_1] = 0$ 



> Ilo isom.

Intention why It's int is a man Simplest case: Check Ip(t) is a mg in a simple case. Compute  $E_s I_p(t) \xrightarrow{Want} I_p(s)$ Song  $s = t_{M}$   $t = t_{N}$   $M < N \begin{bmatrix} t \\ 0 \end{bmatrix}$   $t_{H} = s$   $t_{H} = t$ 

 $T_{D}(s) = \sum_{h=0}^{M-1} D_{t_{k}} \left( W_{t_{k+1}} - W_{t_{k}} \right)$ 

 $F_{s}I_{p}(t) = F_{s}Z \qquad D_{t_{k}}(W_{t_{k+1}} - W_{t_{k}})$   $k = 0 \qquad t_{k}(W_{t_{k+1}} - W_{t_{k}})$ 

tm S =







