




5.4. Martingales.

Definition 5.11. An adapted process M is a martingale if for every 0 ⩽ s ⩽ t, we have EsMt = Ms.

Remark 5.12. As with discrete time, a martingale is a fair game: stopping based on information available today
will not change your expected return.



Proposition 5.13. Brownian motion is a martingale.

Proof.



6. Stochastic Integration
6.1. Motivation.
• Hold bt shares of a stock with price St.
• Only trade at times P = {0 = t1 < . . . , tn = T}

• Net gain/loss from changes in stock price:
n−1X

k=0
btk

∆kS, where ∆kS = Stk+1 − Stk
.

• Trade continuously in time. Expect net gain/loss to be lim
∥P ∥→0

n−1X

k=0
btk

∆kS =
Z T

0
bt dSt.

▷ ∥P∥ = maxk(tk+1 − tk).

▷ Riemann-Stieltjes integral: lim
∥P ∥→0

n−1X

k=0
bξk

∆kS =
Z T

0
bt dSt,

▷ The ξk ∈ [tk, tk+1] can be chosen arbitrarily.
▷ Only works if the first variation of S is finite. False for most stochastic processes.



6.2. First Variation.

Definition 6.1. For any process X, define the first variation by

V[0,T ](X) def= lim
∥P ∥→0

n−1X

k=0
|∆kX| def= lim

∥P ∥→0

n−1X

k=0
|Xtk+1 − Xtk

| .

Remark 6.2. If X(t) is a differentiable function of t then V[0,T ]X < ∞.

Proposition 6.3. EV[0,T ]W = ∞
Remark 6.4. In fact, V[0,T ]W = ∞ almost surely. Brownian motion does not have finite first variation.

Remark 6.5. The Riemann-Stieltjes integral
R T

0 bt dWt does not exist.







6.3. Quadratic Variation.

Definition 6.6. If M is a continuous time adapted process, define

[M, M ]T = lim
∥P ∥→0

n−1X

k=0
(Mtk+1 − Mtk

)2 = lim
∥P ∥→0

n−1X

k=0
(∆kM)2 .

Proposition 6.7. For continuous processes the following hold:
(1) Finite first variation implies the quadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.



Proposition 6.8. [W, W ]T = T almost surely.

Remark 6.9. For use in the proof: Var(N (0, σ2)2) = EN (0, σ2)4 − (EN (0, σ2)2)2 = 2σ2.

Proof:.









Proposition 6.10. W 2
t − [W, W ]t is a martingale.





Theorem 6.11. Let M be a continuous martingale.
(1) EM2

t < ∞ if and only if E[M, M ]t < ∞.
(2) In this case M2

t − [M, M ]t is a continuous martingale.
(3) Conversely, if M2

t − At is a martingale for any continuous, increasing process A such that A0 = 0, then
we must have At = [M, M ]t.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.



Remark 6.13. If X has finite first variation, then |Xt+δt − Xt| ≈ O(δt).

Remark 6.14. If X has finite quadratic variation, then |Xt+δt − Xt| ≈ O(
√

δt) ≫ O(δt).



6.4. Itô Integrals.
• Dt = D(t) some adapted process (position on an asset).
• P = {0 = t0 < t1 < · · ·} increasing sequence of times.
• ∥P∥ = maxi ti+1 − ti, and ∆iX = Xti+1 − Xti

.
• W : standard Brownian motion.

• IP (T ) def=
n−1X

i=0
Dti∆iW + Dtn(WT − Wtn)

Definition 6.15. The Itô Integral of D with respect to Brownian motion is defined by

IT =
Z T

0
Dt dWt = lim

∥P ∥→0
IP (T ) .

Remark 6.16. Suppose for simplicity T = tn.
(1) Riemann integrals: lim

∥P ∥→0

X
Dξi

∆iW exists, for any ξi ∈ [ti, ti+1].

(2) Itô integrals: Need ξi = ti for the limit to exist.



Theorem 6.17. If E

Z T

0
D2

t dt < ∞ a.s., then:

(1) IT = lim
∥P ∥→0

IP (T ) exists a.s., and EI(T )2 < ∞.

(2) The process IT is a martingale: EsIt = Es

Z t

0
Dr dWr =

Z s

0
Dr dWr = Is

(3) [I, I]T =
Z T

0
D2

t dt a.s.

Remark 6.18. If we only had
Z T

0
D2

t dt < ∞ a.s., then I(T ) = lim
∥P ∥→0

IP (T ) still exists, and is finite a.s. But it

may not be a martingale (it’s a local martingale).



Corollary 6.19 (Itô isometry). E
�Z T

0
Dt dWt

�2
= E

Z T

0
D2

t dt

Proof.












