hme 's NM Coin flip tris Itels \tilde{P} under which $= n(P_{un} S_{u+1}) = D_u S_n$ sterk is a $\tilde{P} - mq)$. Equivale mom ROM? F. Coin flip State a (Dise

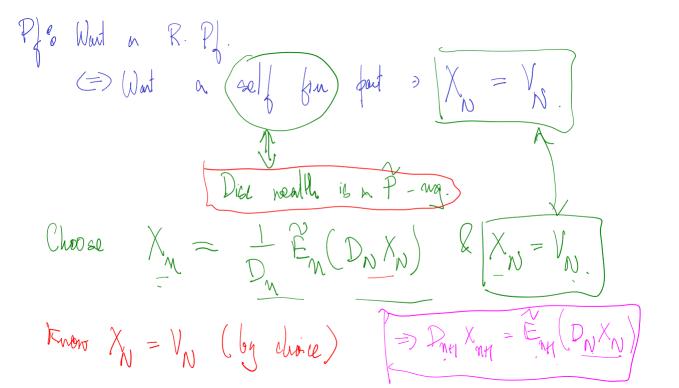
Theorem 4.57. Let X_n represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if and only if the discounted wealth $D_n X_n$ is a martingale under the risk neutral measure \mathbf{P} .

Remark 4.58. Recall a portfolio is *self financing* if $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n)$ for some *adapted* process Δ_n .

- (1) That is, self-financing portfolios use only tradable assets when trading, and don't look into the future.
- (2) All replication has to be done using self-financing portfolios.

Proof of Proposition 4.1.

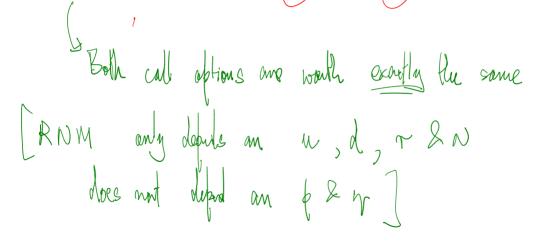
Scentry Pigs VN at time N . G RNP forman $\Lambda \leq \mathbb{N}$ AFP at time $\mathcal{E}_{\mathcal{U}}(\mathcal{D}_{\mathcal{N}}\mathcal{V}_{\mathcal{N}})$ $= \frac{1}{1}$ = (1+0-)M D_n = Disout for



NTS DX is a P-ma Lo Cherk : $D_{n}X_{n} \approx \tilde{E}_{n}(D_{n+1}X_{n+1})$ Compute $E_{n}(D_{nn}, X_{nn}) = E_{n}(E_{n+1}(D_{N}, X_{N}))$ Tower $E_{M}(D_{N}X_{N})$ = Dry Xy O. Dove!!

Example 4.59. Consider two stocks S^1 and S^2 , u = 2, d = 1/2. \triangleright The coin flips for S^1 are heads with probability 90%, and tails with probability 10%. \triangleright The coin flips for S^2 are heads with probability 99%, and tails with probability 1%. \triangleright Which stock do you like more?

 \triangleright Amongst a call option for the two stocks with strike K and maturity N, which one will be priced higher?



Remark 4.60. Even though the stock price changes according to a coin that flips heads with probability p_1 , the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{E}_n V_N$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_1 and tails with probability \tilde{q}_1 . $\tilde{E}_n V_N$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_1 and tails with probability \tilde{q}_1 . \tilde{q}_1 . $\tilde{p}_1 M_N$ $\tilde{p}_1 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_1 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_1 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_1 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_1 M_N$ $\tilde{p}_2 M_N$ $\tilde{p}_$

- Probability measure: Lebesgue integral, and not a finite sum. Same properties.
- Filtration: Same intuition. No easy description.
- Conditional expectation: Same properties, no formula.
- Risk neutral measure: Formula for \tilde{P} is complicated (Girsanov theorem.)
- Everything still works because of of Theorem 4.57. Understanding why is harder.

Kim & Dig wowth is a

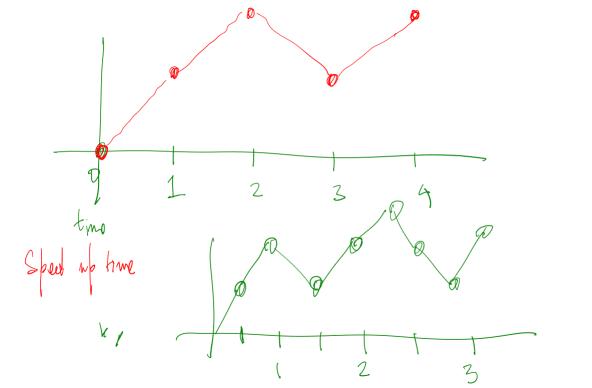
5. Stochastic Processes

- 5.1. Brownian motion.
- $\mathcal{M}(\mathcal{Z}_{i}) =$ Discrete time: Simple Random Walk. $\triangleright [X_n = \sum_{i=1}^n \xi_i]$ where ξ_i 's are i.i.d. $E_{\xi_i} = 0$ and $\operatorname{Range}(\xi_i) = \{\pm 1\}$. Continuous time: Brownian motion.
 - $\triangleright Y_t = X_n + (t-n)\xi_{n+1}$ if $t \in [n, n+1)$.
 - \triangleright Rescale: $Y_t^{\varepsilon} = \sqrt{\varepsilon} Y_{t/\varepsilon}$. (Chose $\sqrt{\varepsilon}$ factor to ensure $\operatorname{Var}(Y_t^{\varepsilon}) \approx t$.) \triangleright Let $W_t = \lim Y_t^{\varepsilon}$.
- Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.
- \triangleright Named after Robert Brown (a botanist).

 $\epsilon \rightarrow 0$

Definition is intuitive, but not as convenient to work with.

$$X_0 = 0$$
 Outcome of k^{th} play is the RV $[3_k]$
Common nearly $X_1 = X_0 + \overline{s}_1$
 $V_{1t_1} = X_1 + \overline{s}_{1t_1}$



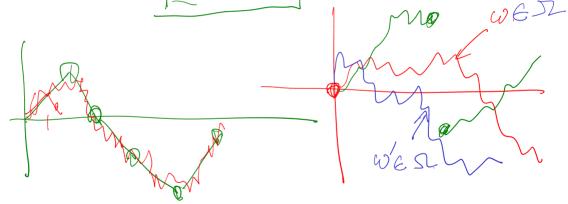
 $V_{W}(X_{M}) = V_{av}\left(\begin{array}{c}M\\Z\\Z\\Z\end{array}\right) = \begin{array}{c}m\\Z\\Z\\Z\end{array}\left(\begin{array}{c}m\\Z\\Z\end{array}\right) = \begin{array}{c}m\\Z\\Z\\Z\end{array}\left(\begin{array}{c}m\\Z\\Z\end{array}\right) \left(\begin{array}{c}m\\Z\\Z\end{array}\right) \left(\begin{array}{c}m\\Z\end{array}\right) \left(\begin{array}{c}m\\Z\\Z\end{array}\right) \left(\begin{array}{c}m\\Z\end{array}\right) \left(\begin{array}{c}m\\Z\\Z\end{array}\right) \left(\begin{array}{c}m\\Z\end{array}\right) \left(\begin{array}{$ $Y_{t}^{e} = EY_{t_{q}}$ (Sing to is an int mult af E) $V_{av}\left(Y_{f}^{\varepsilon}\right) = \varepsilon \quad V_{av}\left(Y_{f}^{\varepsilon}\right) = \varepsilon \quad t$

• If t, s are multiples of ε : $Y_t^{\varepsilon} - Y_s^{\varepsilon} \sim \sqrt{\varepsilon} \sum_{i=1}^{(t-s)/\varepsilon} \xi_i \xrightarrow{\varepsilon \to 0} \mathcal{N}(0, t-s)$. • $Y_t^{\varepsilon} - Y_s^{\varepsilon}$ only uses coin tosses that are "after s", and so independent of Y_s^{ε} . Definition 5.2. Brownian motion is a continuous process such that: F. = D, (1) $W_t - \underline{W}_s \sim \mathcal{N}(0, t-\overline{s}),$ (2) $\widehat{W_t} - \widehat{W_s}$ is independent of \mathcal{F}_s . N -> CP $C_{2T} \xrightarrow{1}_{NT} \xrightarrow{N}_{2S_{1}}^{V} \xrightarrow{N \rightarrow N} \rightarrow N(0, 1)$ t & s and mut af ξ . ($s = M \xi$ & $t = M \xi$.

 $\gamma_{t}^{k} - \gamma_{t}^{k} = \sqrt{e} \sum_{m+1}^{n} \overline{z}_{k}$ Them $= \int_{\mathcal{E}} \circ \left(\int_{\mathcal{S}} \int_{\mathcal{S}} \left(\frac{t}{\varepsilon} - \frac{s}{\varepsilon} \right) \right) \left(\frac{t}{\varepsilon} - \frac{s}{\varepsilon} \right) \left(\frac{t}{\varepsilon} - \frac{$ = JE-S I (Sam & N iid RV'S) $\frac{t-s}{s} = N$ $\sim N(o_1 t - s)$.

5.2. Sample space, measure, and filtration.

- Discrete time: Sample space $\underline{\Omega} = \{(\omega_1, \dots, \omega_N) \mid \omega_i \text{ represents the outcome of the } i^{\text{th}} \text{ coin toss} \}.$
- View $(\omega_1, \ldots, \omega_N)$ as the trajectory of a random walk.
- Continuous time: Sample space $\Omega = \overline{C([0,\infty))}$ (space of continuous functions).
 - > It's infinite. No probability mass function!
 - \triangleright Mathematically impossible to define P(A) for all $A \subseteq \Omega$.



• Restrict our attention to
$$\mathcal{G}$$
, a subset of some sets $A \subseteq \Omega$, on which P can be defined.
• \mathcal{G} is a σ -algebra. (Closed countable under unions, complements, intersections.)
• P is called a probability measure on (Ω, \mathcal{G}) if:
• $P: \mathcal{G} \to [0, 1], P(\emptyset) = 0, P(\Omega) = 1.$
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• $P(A \cup B) = P(A) + P(B)$ if $\overline{A}, B \in \mathcal{G}$ are disjoint.
• Require $\{X \in A\} \in \mathcal{G}$ for every "nice" $A \subseteq \mathbb{R}$.
• Require $\{X \in A\} \in \mathcal{G}$ for every "nice" $A \subseteq \mathbb{R}$.
• Recall $\{X \in A\} = \{\omega \in \Omega \mid X(\omega) \in \overline{A}\}$.
• Recall $\{X \in A\} = \{\omega \in \Omega \mid X(\omega) \in \overline{A}\}$.
• $X \notin \mathcal{O} = \{\omega \mid X(\omega) \in A\}$.
• $X \notin \mathcal{O} = \{\omega \mid X(\omega) \in A\}$.
• $X \oplus \mathcal{O} = \{\omega \mid X(\omega) \in A\}$.
• $X \oplus \mathcal{O} = \{\omega \mid X(\omega) \in A\}$.
• $X \oplus \mathcal{O} = \{\omega \mid X(\omega) \in A\}$.

• Expectation is a Lebesgue Integral: Notation $\underline{EX} = \int_{\Omega} \underline{X} dP = \int_{\Omega} \underline{X}(\omega) dP(\omega).$ \triangleright No simple formula. $E \chi = \frac{2}{x_i} x_i$ F(X = 1;)lige op

a, & nat variam. Proposition 5.3 (Useful properties of expectation). (1) (Linearity) $\alpha, \beta \in \mathbb{R}$, X, Y random variables, $E(\alpha X + \beta Y) = \alpha EX + \beta EY$. (2) (Positivity) If $X \ge 0$ then $EX \ge 0$. If $X \ge 0$ and EX = 0 then X = 0 almost surely. (3) (Layer Cake) $If \ \overrightarrow{X \ge} 0, \ \overrightarrow{EX} = \int_{0}^{\infty} P(\overrightarrow{X \ge} t) \, dt.$ $\underbrace{(4)}$ More generally, if φ is increasing, $\underline{\varphi}(0) = 0$ then $\underline{E} \underline{\varphi}(X) = \int_0^\infty \underline{\varphi'(t)} \underline{P}(X \ge t) dt.$ (5) (Unconscious Statistician Formula) If PDF of X is p, then $Ef(X) = \int_{-\infty}^{\infty} f(x)p(x) dx$. haza (X=0 arg. means P(X=0) = 1). Q = donintre ng Q PDF of X is k, then E(X) = J(x) p(x) dx

- Filtrations:
 - \triangleright Discrete time: \mathcal{F}_n = events described using the first *n* coin tosses.
 - ▷ Coin tosses doesn't translate well to continuous time.
 - \triangleright Discrete time try #2: \mathcal{F}_n = events described using the trajectory of the SRW up to time n.
 - \triangleright Continuous time; $(\mathcal{F}_t) \neq \overline{\text{events}}$ described using the trajectory of the Brownian motion up to time t.

 - \triangleright As before: if $s \leq t$, then $\overline{\mathcal{F}}_s \subseteq \overline{\mathcal{F}}_t$.
 - $\triangleright \text{ Discrete time: } \mathcal{F}_0 = \{ \underline{\emptyset}, \underline{\Omega} \}. \text{ Continuous time: } \mathcal{F}_0 = \{ A \in \mathcal{G} \mid \mathbf{P}(\underline{A}) \in \{0, 1\} \}.$

$$X_{n+1} = X_n + \overline{z}_{u+1} \qquad (\overline{z}_{n+1} = \operatorname{outcomp} n + n + n + 1 + \operatorname{coin} \overline{bas})$$

$$E_g \in S_{in} \quad s < t.$$

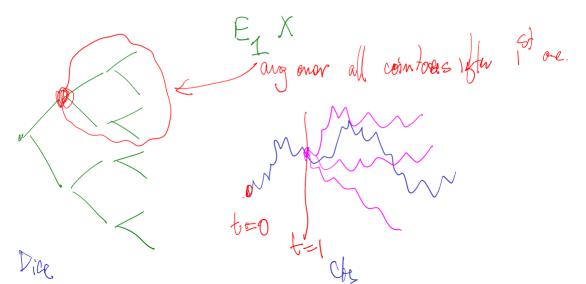
$$\{W_g > D_f \in \mathcal{E}_E$$

$$\{W_g \in [i, 2] \notin W_f < D_f \in \mathcal{E}_E$$

~with > of € € EW, >OZ EF

5.3. Conditional expectation.

- Notation $|\underline{E_t}(X)| = \underline{E}(\underline{X} \mid \mathcal{F}_t)$ (read as conditional expectation of X given \mathcal{F}_t)
- No formula! But same intuition as discrete time.
- $E_t X(\omega) =$ "average of X over $\Pi_t(\omega)$ ", where $\Pi_t(\omega) = \{\omega' \in \Omega \mid \omega'(s) = \omega(s) \; \forall s \leq t\}.$
- Mathematically problematic: $\mathbf{P}(\Pi_t(\omega)) = 0$ (but it still works out.)



Definition 5.4. $E_t X$ is the unique random variable such that:

(1) $\boldsymbol{E}_t X$ is \mathcal{F}_t -measurable.

(2) For every
$$A \in \mathcal{F}_t$$
, $\int_A E_t X dP = \int_A X dP$

Remark 5.5. Choosing $A = \Omega$ implies $\boldsymbol{E}(\boldsymbol{E}_t X) = \boldsymbol{E} X$.

Proposition 5.6 (Useful properties of conditional expectation).

- (1) If $\underline{\alpha}, \underline{\beta} \in \mathbb{R}$ are constants, X, Y, random variables $E_t(\alpha X + \beta Y) = \alpha E_t X + \beta E_t Y$.
- (2) If $X \ge 0$, then $E_t X \ge 0$. Equality holds if and only if X = 0 almost surely.
- (3) (Tower property) If $0 \leq s \leq t$, then $E_s(E_tX) = E_sX$.
- (4) If X is \mathcal{F}_t measurable, and Y is any random variable, then $\mathcal{E}_t(XY) = X \mathcal{E}_t Y$.
- (5) If X is \mathcal{F}_t measurable, then $E_t X = X$ (follows by choosing Y = 1 above).
- (6) If \overline{Y} is independent of \mathcal{F}_t , then $E_t Y = EY$.

Remark 5.7. These properties are exactly the same as in discrete time.

Lemma 5.8 (Independence Lemma). If X is \mathcal{F}_t measurable, Y is independent of \mathcal{F}_t , and $f = f(x, y) \colon \mathbb{R}^2 \to \mathbb{R}$ is any function, then $E_t f(X,Y) = g(Y), \quad where \quad g(y) = E_t f(X,y).$ Remark 5.9. If p_Y is the PDF of Y, then $E_t f(X, Y) = \int_{\mathbb{T}} f(X, y) p_Y(y) dy$. f(X, Y) in Y {

5.4. Martingales.

Definition 5.10. An adapted process M is a martingale if for every $0 \leq s \leq t$, we have $E_s M_t = M_s$.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information available today will not change your expected return.

Proposition 5.12. Brownian motion is a martingale.

Proof.