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é[ﬁeoré&m 4.57. Let X,, represent the wealth of a portfolio at time n. The portfolio zs@portfolw if
and only if the discounted wealth D Xn is a martingale under the risk neutral measure P.

—

Xnt1 = AnSntr + (L4 7)(Xn — AnSh)

—_ e

for some adapted
—_—

Remark 4.58. Recall a portfolio is self financing i
process A,,.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t look into the future.
(2) All replication has to be done using self-financing portfolios.
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Ezxample 4.59. Consider two stocks /Sql and g, u=2,d f_l&

> The coin flips for S* are heads with probability Q;QZ'Q, and tails with probability 10%.
> The coin flips for E\;are heads with probability g_%, and tails with probability 1%.

> Which stock do you like more?
> Amongst a call option for the two stocks with Strik@nd maturity@which one will be priced higher?
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Remark 4.60. Even though the stock pﬂ&c_d/namgewm a coin that flips heads with probability pq,
the arw

e is computed using conditional expectations using the msk neutral probability] So when

computing E, Vywe use our new 1nvented ‘risk neutral” coin, that, flips he ds Wlth probabilit and tails

with probability )i
Concepts that will be generali Ld to ¢ Ltlnuous time. /7/\\

¢ Probability measure: Lebesgue integral, and not a finite sum. Same propertles.
o Filtration: Same intuition. No easy description.

o Conditional expectation: Same propexties, no formula.
« Riskmeutral measure: Formula fo

: complicated (Girsanov theorem.)
——
o Everything still works because of of Theore Understanding why is harder.

z
EJ %A«. & DM@




5. Stochastic Processes

5.1. Brownian motion. /\([M @L > = L %A

« Discrete time: Simple Random Walk.
l>he¥§i’s are i.i.d@d&&mge(&) = {£1}.
o Continuoustime: Brownian motiort: —
>Y; =X+ (t—n)pift€n,n+1).
> Rescale: Y7 = \/eY;/.. (Chose /€ factor to ensure Var(Yy) ~t.)
! L“\WE Z% Yf’ ) " Weppor Vrouss

Definition 5.1 (Brownian motion). The procesé@ove is called a Brownian motion.
.

> Named after Robert Brown (a botanist).
> Definition is intuitive, but not as convenient to work with.
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o If ¢, s are multiples of g \/‘ Z 13 e—0 ( 0 = s).
. nly uses coin tosses that are after s”, and so independent 0@
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5.2. Sample space, measure, and filtration.
o Discrete time: Sample space Q = {(w1,...,wx) | w; represents the outcome of the i*® coin toss}.
e View (wq,...,wn) as the traj%’étory of & tandom walk. =
. [Continuous time: |Sample space 2 :(space of continuous functions).
> It’s infinite."INO probability mass function!
> Mathematically impossible to deﬁneiP@ for all A C ).
T~




¢ Restrict our attention to G, a subset of some sets A C €2, on Whic@an be defined.
> G is a o-algebra. (Clos?[_'countable under unions, complements, infersections.)

. called a probability measure on (£2,G) if:
> P: G —[0,1], E@: 0, P() =1.
> P(AUB) = P(A)+ P(B) if A, B € G are disjoint.

> 1 4, € G, P({JAn) = lim P(4,). QZ AWL C Afvbrl >

e Random variables are|measurable functions jpf the sample space:
> Require {X € A} €G for every “mice” A C R.

7
Eg {X=1}€G, {X >5}€G,{X €[3,4)} €G, etc. e
ERegcau{XeA}:{wemX(w)eAit.—/\ Le K > 0.
¢
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o Expectation is a Lebesgue Integral: Notation EX / X dP / )ﬂ/ dP

> N mple formula.
ZallA,thenEX Zaz 1 ZQ %—»A)
1 weA
. wvea

> 14 is the indicat tion of A: 1 =
a is the indicator function of A: 1a(w) =4 " T-0)
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Proposition 5.3 (Useful properties of expectation). 09 F MN& {L '

(1) (Linearity)|a, 5 € R| X, Y random variables, EM =aEX + BEY.
(2) (P((m;) IfFx> O then EX >0, If X > 0 and EX =0 then X = 0 almost surely.
M Nl

%(Layer Cake) IfX >0, EX —/ P(X >1t)dt.

More generally, if ¢ is increasing, ©(0) = 0 then Ep(X / P(X >t)dt.
g v, if ¢ is increasing p(0)=0 pX) = | ¢t PX>1)dt

@S‘cahsmman Formula) If PDF of X “'then Ef / f(z ‘)
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o Filtrations:

v

Continuous time;

It <T) A C R

Discrete time: Foy = {

]

%WH[ = KM ko, (im = blemq | )

Discrete time: JF,, = events described using the ﬁrst
Coin tosses doesn’

> t tran:
> Discrete time try #2: F,, = events described using the trajectory of the SRW \up to time n.
> é: >

> n

>

>

nslate well to continuous time. _

“events described using the Wf the Brownian motion up to time ¢.

(W, € Ay, Wy, € Ay} € Fy. (Need all t; < 1)

A fe: if s < t, then Fs C F;.

*’J‘ﬁ?mous fme: Fo ={A € G| P(A) €{0,1}}.

f.
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5.3. Conditional expectation.

« Notation|Ey(X)/= E(X | F¢) (read as conditional expectation of X given F3)
e No formu a' But same inttition as dlscrete time.

o E, X (w)= “average of X over II;(w)”, where II;(w) = {0’ € Q| w'(s) = w(s) Vs < t}.
+ Mathematically problematic: P(II;(w)) = 0 (but it still works out.)
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(Definition 5.4. EtX is the unlqu@such that:
(1) E X is Fi- —measurable
—_——

(2) For every A € J-"t, / E,XdP = / XdpP

/'_—/M-
Remark 5.5. Choosing A = Q) implies E(E:X) = EX.

Proposition 5.6 (Useful properties of conditional expectation).

(1) If o, B € R are constants, X,Y, random vamablesm)( + pY) = aE X + SEY
(2) IfX >0, then E,X > 0. Equality holds if and only if X =0 almost surely. —

(3) (Tower propertym s < t, then Ey(EX) = EX.

(4) If X is F; measurable, and Y is any ‘random varm then’Ey(XY) = X E,Y .
(5) If X is F; measurable, then ExX = X (fotlqws by choosing Y =1 above)
(6) If Y is independent of Fy, then ELX =

Remark 5.7. These properties are exactly the same as in discrete time.



Lemma 5.8 (Independence Lemma). If X is F; measurable, Y is independent of Fy, and f = f(m,g) R? - R

is any function, then —
E, f(X,)Y)= g(X) , where gy E Xy

Remark 5.9. If@ is the PDF of Y, then E;f(X,Y) = / F(X,y)py (y) dy.
o R P
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5.4. Martingales.
Definition 5.10. An adapted process M is a martingale if for every 0 < s < ¢, we have E;,M; = M.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information available today
will not change your expected return.



Proposition 5.12. Brownian motion is a martingale.

Proof.



