
2. Syllabus Overview
• Class website and full syllabus: https://www.math.cmu.edu/~gautam/sj/teaching/2022-23/944-scalc-finance1
• TA’s: Jonghwa Park <jonghwap@andrew.cmu.edu>.
• Homework Due: 10:10AM Oct 27, Nov 3, 10, 22, 29, Dec 6
• Midterm: Tue, Nov 15, in class
• Homework:

▷ Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
▷ 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
▷ One homework assignments can be turned in 24h late without penalty.
▷ Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines,

etc.).
▷ Collaboration is encouraged. Homework is not a test – ensure you learn from doing the homework.
▷ You must write solutions independently, and can only turn in solutions you fully understand.

• Academic Integrity
▷ Zero tolerance for violations (automatic R).
▷ Violations include:

– Not writing up solutions independently and/or plagiarizing solutions
– Turning in solutions you do not understand.
– Seeking, receiving or providing assistance during an exam.

▷ All violations will be reported to the university, and they may impose additional penalties.
• Grading: 10% homework, 30% midterm, 60% final.



Course Outline.
• Review of Fundamentals: Replication, arbitrage free pricing.
• Quick study of the multi-period binomial model.

▷ Simple example of replication / arbitrage free pricing.
▷ Understand conditional expectations. (Have an explicit formula.)
▷ Understand measurablity / adaptedness. (Can be stated easily in terms of coin tosses that have / have not

occurred.)
▷ Understand risk neutral measures. Explicit formula!

• Develop tools to price securities in continuous time.
▷ Brownian motion (not as easy as coin tosses)
▷ Conditional expectation: No explicit formula!
▷ Itô formula: main tool used for computation. Develop some intuition.
▷ Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need

a working knowledge.
▷ Derive and understand the Black-Scholes formula.



3. Replication and Arbitrage
3.1. Replication and arbitrage free pricing.
• Start with a financial market consisting of traded assets (stocks, bonds, money market, options, etc.)
• We model the price of these assets through random variables (stochastic processes).
• No Arbitrage Assumption:

▷ In order to make money, you have to take risk. (Can’t make something out of nothing.)
▷ Mathematically: For any trading strategy such that X0 = 0, and Xn ⩾ 0, you must also have Xn = 0

almost surely.
▷ Equivalently: There doesn’t exist a trading strategy with X0 = 0, Xn ⩾ 0 and P (Xn > 0) > 0.



• Arbitrage free price
▷ Now consider a non-traded asset Y (e.g. an option). How do you price it?
▷ Arbitrage free price: If given the opportunity to trade Y at price V0, the market remains arbitrage free,

then we say V0 is the arbitrage free price of Y .



• Replication
▷ We will almost always find the arbitrage free price by replication.
▷ Say the non-traded asset pays VN at time N (e.g. call options).
▷ Try and replicate the payoff :

– Start with X0 dollars.
– Use only traded assets and ensure that at maturity XN = VN .

▷ Then the arbitrage free price is uniquely determined, and must be X0.

Remark 3.1. The arbitrage free price is unique if and only if there is a replicating strategy! In this case, the
arbitrage free price is exactly the initial capital of the replicating strategy.



3.2. Example: One period Binomial model.
• Consider a market with a stock, and money market account.
• Interest rate for borrowing and lending is r. No transaction costs. Can buy and sell fractional quantities of

the stock.
• Model assumption: Flip a coin that lands heads with probability p1 ∈ (0, 1) and tails with probability

q1 = 1 − p1. Model S1 = uS0 if heads, and S1 = dS0 if tails.
▷ S0 is stock price at time 0 (known).
▷ S1 is stock price after one time period (random).
▷ u, d are model parameters (pre-supposed). Called the up and down factors. (Will always assume 0 < d < u.)

Proposition 3.2. There’s no arbitrage in this model if and only if d < 1 + r < u.

Proof.







Proposition 3.3. Say a security pays V1 at time 1 (V1 can depend on whether the coin flip is heads or tails).
The arbitrage free price at time 0 is given by

V0 = 1
1 + r

�
p̃1V1(H) + q̃1V1(T )

�
= 1

1 + r
ẼV1 , where p̃1 = 1 + r − d

u − d
, q̃1 = u − (1 + r)

u − d
.

The replicating strategy holds ∆0 = V1(H) − V1(T )
(u − d)S0

shares of stock at time 0.

Proof.









4. Multi-Period Binomial Model.
• Same setup as the one period case 0 < d < 1 + r < u, and toss coins that land heads with probability p1 and

tails with probability q1.
• Except now the security matures at time N > 1.
• Stock price: Sn+1 = uSn if n + 1-th coin toss is heads, and Sn+1 = dSn otherwise.
• To replicate it a security, we start with capital X0.
• Buy ∆0 shares of stock, and put the rest in cash.
• Get X1 = ∆0S1 + (1 + r)(X0 − ∆0S0).
• Repeat. Self Financing Condition: Xn+1 = ∆nSn+1 + (1 + r)(Xn − ∆nSn).
• Adaptedness: ∆n can only depend on outcomes of coin tosses before n!



Proposition 4.1. Consider a security that pays VN at time N . Then for any n ⩽ N :

Vn = 1
(1 + r)N−n

ẼnVN , ∆n = Vn+1(ωn+1 = H) − Vn+1(ωn+1 = T )
(u − d)Sn

.

• Vn is the arbitrage free price at time n ⩽ N .
• ∆n is the number of shares held in the replicating portfolio at time n (trading strategy).

Question 4.2. Why does this work?

Question 4.3. What is Ẽn? (It’s different from E, and different from En).



4.1. Quick review probability (finite Sample spaces). This is just a quick review for you to fix notation.
You should already be familiar with this material from previous courses, and we won’t go over it in class. We
will, however, spend some time studying conditional expectation.

Let N ∈ N be large (typically the maturity time of financial securities).

Definition 4.4. The sample space is the set Ω = {(ω1, . . . , ωN ) | each ωi represents the outcome of a coin toss}.

▷ E.g. ωi ∈ {H, T}, or ωi ∈ {±1}. (Each ωi could also represent the outcome of the roll of a M sided die.)

Definition 4.5. A sample point is a point ω = (ω1, . . . , ωN ) ∈ Ω.

▷ Each sample point represents the outcome of a sequence of all coin tosses from 1 to N .

Definition 4.6. A probability mass function (PMF for short) is a function p : Ω → [0, 1] such that
P

ω∈Ω p(ω) = 1.

Example 4.7. Typical example: Fix p1 ∈ (0, 1), q1 = 1 − p1 and set p(ω) = p
H(ω)
1 q

T (ω)
1 . Here H(ω) is the number

of heads in the sequence ω = (ω1, . . . , ωN ), and T (ω) is the number of tails.

Definition 4.8. An event is a subset of Ω. Define P (A) =
P

ω∈A p(ω).

▷ P is called the probability measure associated with the PMF p.

Example 4.9. A{ω ∈ Ω | ω1 = +1}. Check P (A) = p1.

4.2. Random Variables and Independence.

Definition 4.10. A random variable is a function X : Ω → R.



Example 4.11. X(ω) =
(

1 ω2 = +1 ,

−1 ω2 = −1 ,
is a random variable corresponding to the outcome of the second coin

toss.
Definition 4.12. The expectation of a random variable X is EX =

P
X(ω)p(ω).

Remark 4.13. Note if Range(X) = {x1, . . . , xn}, then EX =
P

X(ω)p(ω) =
Pn

1 xiP (X = xi).

Definition 4.14. The variance of a random variable is Var(X) = E(X − EX)2.
Remark 4.15. Note Var(X) = EX2 − (EX)2.
Definition 4.16. Two events are independent if P (A ∩ B) = P (A)P (B).
Definition 4.17. The events A1, . . . , An are independent if for any sub-collection Ai1 , . . . , Aik

we have
P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik

) = P (Ai1)P (Ai2) · · · P (Aik
) .

Remark 4.18. When n > 2, it is not enough to only require P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · · P (An)
Definition 4.19. Two random variables are independent if P (X = x, Y = y) = P (X = x)P (Y = y) for all
x, y ∈ R.
Definition 4.20. The random variables X1, . . . , Xn are independent if for all x1, . . . , xn ∈ R we have

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P (X1 = x1)P (X2 = x2) · · · P (Xn = xn) .

Remark 4.21. Independent random variables are uncorrelated, but not vice versa.



4.3. Filtrations.
• Let Ω = {(ω1, . . . , ωN ) | each ωi ∈ ±1 represents the outcome of a coin toss. }.

▷ It is convenient to visualize Ω and random variables by drawing trees.
▷ E.g. X = outcome (±1) of the second coin toss, Y = number of heads, etc.



Definition 4.22. We define a filtration on Ω as follows:
▷ F0 = {∅, Ω}.
▷ F1 = all events that can be described by only the first coin toss. E.g. A = {ω | ω1 = +1} ∈ F1.
▷ F2 = all events that can be described by only the first two coin toss.

– E.g. A = {ω | ω1 = +1} ∈ F2, B = {ω | ω1 = +1, ω2 = −1} ∈ F2.
▷ Fn = all events that can be described by only the first n coin tosses.

– E.g. A = {ω | ω1 = 1, ω3 = −1, ωn = 1} ∈ Fn.

Remark 4.23. Note {∅, Ω} = F0 ⊆ F1 ⊆ · · · ⊆ FN = P(Ω).

Remark 4.24. If A, B ∈ Fn, then so do Ac, Bc, A ∩ B, A ∪ B, A − B, B − A.



Definition 4.25. Let n ∈ {0, . . . , N}. We say a random variable X is Fn-measurable if X(ω) only depends on
ω1, . . . , ωn.
▷ Equivalently, for any B ⊆ R, the event {X ∈ B} ∈ Fn.

Remark 4.26 (Use in Finance). For every n, the trading strategy at time n (denoted by ∆n) must be Fn

measurable. We can not trade today based on tomorrows price.

Example 4.27. If we represent Ω as a tree, Fn measurablity can be visualized by checking constancy on leaves.



4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n ⩽ N . We define E(X | Fn) = EnX to be the random
variable given by

EnX(ω) =
X

xi∈Range(X)

xiP (X = xi | Πn(ω))

where Πn(ω) = {ω′ ∈ Ω | ω′
1 = ω1, . . . , ω′

n = ωn}
Remark 4.29. The above formula does not generalize well to infinite probability spaces. We will develop certain
properties of En, and then only use those properties going forward.

Example 4.30. If we represent Ω as a tree, EnX can be computed by averaging over leaves.

Remark 4.31. EnX is the “best approximation” of X given only the first n coin tosses.



Proposition 4.32. The conditional expectation EnX defined by the above formula satisfies the following two
properties:

(1) EnX is an Fn-measurable random variable.
(2) For every A ∈ Fn,

X

ω∈A

EnX(ω)p(ω) =
X

ω∈A

X(ω)p(ω).

Remark 4.33. This property is used to define conditional expectations in the continuous time setting. It turns
out that there is exactly one random variable that satisfies both the above properties; and thus we define EnX
to be the unique random variable which satisfies both the above properties.

Remark 4.34. Note, choosing A = Ω, we see E(EnX) = EX.



Proposition 4.35. (1) If X, Y are two random variables and α ∈ R, then En(X + αY ) = EnX + αEnY .
(2) (Tower property) If m ⩽ n, then Em(EnX) = EmX.
(3) If X is Fn measurable, and Y is any random variable, then En(XY ) = XEnY .



Proposition 4.36. (1) If X is measurable with respect to Fn, then EnX = X.
(2) If X is independent of Fn then EnX = EX.

Remark 4.37. We say X is independent of Fn if for every A ∈ Fn and B ⊆ R, the events A and {X ∈ B} are
independent.

Example 4.38. If X only depends on the (n + 1)th, (n + 2)th, . . . , nth coin tosses and not the 1st, 2nd, . . . , nth

coin tosses, then X is independent of Fn.



Proposition 4.39 (Independence lemma). If X is independent of Fn and Y is Fn-measurable, and f : R → R
is a function then

Enf(X, Y ) =
mX

i=1
f(xi, Y )P (X = xi) , where {x1, . . . , xm} = X(Ω) .


