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1. Preface.

These notes originated as slides I used while teaching this course remotely in 2020. They mainly
contain theorem statements and definitions. I projected them (spaced out) in class, and filled in the
proofs by writing over them with a tablet. The annotated version of these slides with handwritten
proofs, can be found on the 2020 website. The EXTEXsource of these slides is also available on git.
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. Sigma Algebras and Measures
1
o Motivation: Suppose f,: [0,1] — [0, 1], and (f,) — 0 pointwise. Prove lim fn=0.

n—oo
> Simple to state using Riemann integrals. Not so easy to prove. (Challenge!) ’
> Will prove this using Lebesgue integration.
— Riemann integration: partition the domain (count sequentially)
— Lebesgue integration: partition the range (stack and sort).
e Goal:
> Develop Lebesgue integration.
> Need a notion of “measure” (generalization of volume)
> Need “o-algebras”.
o Why o-algebras?

Theorem 2.1 (Banach Tarski). There exists n € N, sets Ay, ..., A, C B(0,1) C R? such that:
(1) Ay, ..., A, partition B(0,1).
(2) There exist isometries R; such that Ry(A1), ..., Rn(Ay) partition B(0,2).

e How do you explain this?

Definition 2.2 (o-algebra). Let X be a set. We say ¥ C P(X) is a o-algebra on X if:
(1) Nonempty: () €
(2) Closed under compliments: A € ¥ — A° € .
(3) Closed under countable unions: 4; € ¥ = |J;2, 4; € &.

Remark 2.3. Any o-algebra is also closed under countable intersections.

Question 2.4. Is P(X) is a o-algebra?

Question 2.5. Is © = {0, X} is a o-algebra?

Question 2.6. Is X = {A||A]| < o0 or |A°| < o} a o-algebra?

Question 2.7. Is ¥ = {A] either A or A is finite or countable} a o-algebra?

Proposition 2.8. IfVa € A, ¥, is a 0-algebra, then so is (),c 4 Za-

Definition 2.9. If £ C P(X), define o(€) to be the intersection of all o-algebras containing €.
Remark 2.10. o(€) is the smallest o-algebra containing £.

Definition 2.11. Suppose X is a topological space. The Borel o-algebra on X is defined to be the
o-algebra generated by all open subsets of X. Notation: B(X).

Question 2.12. Can you get B(X) by taking all countable unions / intersections of open and closed
sets?

Question 2.13. Is B(R) = P(R)?

Definition 2.14. Let ¥ be a o-algebra on X. We say p is a (positive) measure on (X, Y) if:
(1) i % = [0,00]

(2) u(@) =0
(3) (Countable additivity): Ej, Es,--- € ¥ are (countably many) pairwise disjoint sets, then

H(U;}; E;) = Zfil 1(E;).



Question 2.15. Is the second assumption necessary?

Question 2.16. Let u(A) = cardinality of A. Is p a measure?

Question 2.17. Fixz xg € X. Let u(A) =1 if xg € A, and 0 otherwise. Is 1 a measure?
Theorem 2.18. There exists a measure A on B(R?) such that \(I) = vol(I) for all cuboids I.

+ Goal: Define [ fdpu (the Lebesgue integral).
o Idea:
> Say s : X — R is such that s = Zf’ a;14,, for some a; € R, A; € ¥. (Called simple functions.)

> Define [ sdp = SN ain(Ay).

> If f >0, define [y fdp=sup,; [y sdp.
o Will do this after constructing the Lebesgue measure.

3. Lebesgue Measure

3.1. Lebesgue Outer Measure.

Definition 3.1. We say I C R is a cell if I is a finite interval. Define ¢(I) = sup I — inf I.
Definition 3.2. We say I C R% is a cell if it is a product of cells. If I = I; x --- x I, then define
o) =TI ).

Remark 3.3. (1) = (1) = ¢(I).

Remark 3.4. ) = Hf(a, a), and so £(0) = 0.

Remark 3.5. For all a € R, 4(1) = ¢(I + a).

Theorem 3.6. There exists a (unique) measure A on (R, B(R?)) such that \(I) = £(I) for all cells
I

Question 3.7. How do you extend ¢ to other sets?

Definition 3.8 (Lebesgue outer measure). Given A C R?, define
A*(A) = inf{z (1) ‘ AC Ulk,where I is a cell} .
1 1

Remark 3.9. Some authors use m* instead of A\*.

Remark 3.10. \* is defined on P(R9); but only “well behaved” on a o-algebra.

Question 3.11. What is \*(0)? What is \*(R%)?

Proposition 3.12. If E C F, then \*(E) < A*(F).

Proposition 3.13. If By, Es, ...C R%, then \*(UE;) < Y07 A (E;).

Proposition 3.14. Let A, B C R?, and suppose d(A, B) > 0. Then \*(AU B) = X\ (A) + X x (B).

Proof: Only need to show A\*(AU B) = A*(A) + A*(B). If A*(AU B) = oo, we are done, so assume
A*(AUB) < oc.

Proposition 3.15. If I C R? is a cell, then \*(I) = £(I).
Lemma 3.16. If {I} divide I by hyperplanes, then Y (1) = ¢(I).



Lemma 3.17. \*(A) = inf{>_¢(I;) | A C Ulg, and I} are all open cells}.
Proof of Proposition 3.15: Suppose first I is closed (hence compact). Pick € > 0.
Proposition 3.18 (Translation invariance). For all A C RY, a € RY, A\*(A) = \*(a + A).

3.2. Carathéodory Extension. Our goal is to start with an outer measure, and restrict it to a
measure.

Definition 3.19. We say p* is an outer measure on X if:
(1) p*: P(X) — [0, 00], and p*(0) = 0.
(2) If AC B then pu*(A) < p*(B).
(3) If A; C X (not necessarily disjoint), then p*(Us2,A;) < Yooy p*(As).
Ezxample 3.20. Any measure is an outer measure.
Example 3.21. The Lebesgue outer measure is an outer measure.
Theorem 3.22 (Carathéodory extension). Let ¥ = {E C X |u*(A) = p*(ANE) +u*(ANE®) YA C
X}. Then X is a o-algebra, and p* is a measure on (X,X).
Remark 3.23. Clearly p*(A) < p*(ANE) + p* (AN E°) for all £, A.

Intuition: Suppose p* = A*. In order to show p*(A) > p*(ANE) + p* (AN E°), cover A by cells
so that p*(A) > > €(I)) — e. Split this cover into cells that intersect E and cells that intersect E°.
If F is nice, hopefully the overlap is small.

Proof of Theorem 3.22

)
) E,FeY¥ = EUF €X. (Hence Ey,...,E, €Y = UVE; € X))
) If Ey,...,E, €3 are pairwise disjoint, A C X, then p*(AN (ULE;)) = > ] u* (AN E;).
) ¥ is closed under countable disjoint unions, and p* is countably additive on X.

Proof: Let Fq, Fo, ..., € X be pairwise disjoint, and A C X be arbitrary.

Remark 3.24. Note, the above shows p*(A N (UE;)) = > w* (AN E;).

Definition 3.25. Define the Lebesgue o-algebra by L(RY) = {E|\*(A) = \*(ANE)+\*(ANE®) VA C
R4},

Definition 3.26. Define the Lebesgue measure by A\(E) = X\*(E) for all E € L(R?).

Remark 3.27. By Carathéodory, £(R?) is a o-algebra, and A is a measure on L.

Question 3.28. Is L(R?) non-trivial?

Proposition 3.29. If I C R% is a cell, then I € L(RY).

Proof:

Proposition 3.30. £(R?%) D B(R?).

Remark 3.31. We will show later that £(R?) = B(RY) + A/, where N’ = {A C R?| \*(A) = 0}.
Here are two results that will be proved later:

Theorem 3.32. L(R?) D B(R?). (In fact the cardinality of L(R?) is larger than that of B(RY).)



Theorem 3.33. L(RY) C P(RY).

Theorem 3.34 (Uniqueness). If u is any measure on (R%, B(R?)) such that u(I) = X(I) for all
cells, then u(E) = A\(E) for all E € B(R?).

Question 3.35. Let £ C P(X), and suppose p, v are two measures which agree on €. Must they
agree on o(E)?

4. Abstract measures

4.1. Dynkin systems.

Question 4.1. Say p,v are two measures such that p=v on I1 C X. Must p=v on o(Il)?
> Clearly need II to be closed under intersections.

Question 4.2. Let A={A e X |u(A) =v(A)}. Must A be a o-algebra?

> If A, Be A, must AUB € A?
> IfACB, A Be A, must B— A€ A?
> If A; C Ai+1 € A, must UTOAZ‘ e AN?

Definition 4.3. We say A C P(X) is a A-system if:

(1) X eA

(2) fACBand A,B € Athen B—AcA.

(3) If A, € A, Ay C Ay then UPA, € A
Definition 4.4. We say II C P(X) is a w-system if whenever A, B € II, we have AN B € II.
Lemma 4.5 (Dynkin system lemma). IfII is a w-system, and A D II, then A D o(II).

Corollary 4.6. If u, v are finite measures such that up = v on 11, and I1 is closed under intersections,
then = v on o(II).
Proof of Lemma 4.5
(1) The arbitrary intersection of A-systems is a A-system. So it make sense to talk about A(II).
(2) If A D TI, then A D A(TD).
(3) If A is both a m-system and a A-system, then A is a o-algebra.
(4) To finish the proof, we only need to show A(II) is closed under intersections.
(5) Let C' € A(T), and define Ac = {B € \(IT) | BN C € A(II)}. Then A¢ is a A-system.
(6) If B,C € A(IT), then BN C € A(II).
> Suppose first D € II. Then D N B € A(II) for all B € A(II).
> For all B € A(II), we must have Ap D A(II).

4.2. Regularity of measures.

Definition 4.7. Let X be a metric space, and u be a Borel measure on X. We say pu is regular if:

(1) For all compact sets K, we have u(K) < oc.
(2) For all open sets U we have u(U) = sup{u(K) | K C U is compact}.
(3) For all Borel sets A we have u(A) = inf{u(U) |U 2 A, U open}.

Motivation:

> Approximation of measurable functions by continuous functions
> Differentiation of measures



> Uniqueness in the Riesz representation theorem
Question 4.8. If u is reqular, is p(A) = sup{u(K) | K C A, K compact} for all Borel sets A?

Remark 4.9. (1) If X = R¢ and pu is regular, then u(A) = sup{u(K)| K C A, K compact}.

(2) Further, for any € > 0 there exists an open set U 2 A and a closed set C' C A such that
wlU—-C)<e

(3) If u(A) < oo, then can make C' above compact.

Proof. Will return and prove it using the next theorem. O

Theorem 4.10. Suppose X is a compact metric space, and p is a finite Borel measure on X.
Then p is reqular. Further, for any e > 0, there exists U 2 A open and K C A closed such that
wlU—-K) <e

Proof:

(1) Let A={A e B(X)|Ve >0, 3K C A compact, U 2O A open, such that (U — K) < &}.
(2) A contains all open sets.

(3) Ais a A-system. (In this case it’s easy to directly show that A is a o-algebra.)

(4) Dynkin’s Lemma implies A D B(X), finishing the proof.

Corollary 4.11. Let X be a metric space and p a Borel measure on X. Suppose there exists a
sequence of sets B, C X such that B, C Bn+1; B, is compact, X = U B,, and u(B,) < co. Then
w is reqular. Further:

(1) For any A € B(X), u(A) =sup{u(K) | K C K is compact}.
(2) For any € > 0, there exists U 2 A open and C C A closed such that n(U — C) < e

Proof. On homework. O

Corollary 4.12. Let A € L(R?).

(1) M(A) =inf{\{U) |U 2 A, U open} =sup{\(K) | K C A, K compact}.

(2) For any € > 0, there exists C' C A closed and U 2 A open such that A(U — C) < ¢
4.3. Non-measurable sets.

Theorem 4.13. There exists E C R such that E ¢ L(R).

Proof:

(1) Let Co, = {B € R| B — a € Q}. (This is the coset of R/Q containing «.)
(2) Let E C R be such that |[ENC,| =1 for all a.

(3) Note if ¢1,q2 € Q with ¢; # qo, then ¢ + ENga + F = (.

(4) Suppose for contradiction E € L(R).
(5)
(6)

A(E) >

AME) = (contradlctlon)

Here are two results that we won’t prove (or use later) in the interest of time.
Theorem 4.14. Let A C R?. Every subset of A is Lebesgue measurable if and only if A(A*) = 0

Theorem 4.15. There exists a set A C R such that:
(1) If E € L(R) and E C A, then A\(E) =0
(2) If E € L(R) and E C A®, then \(E) =



4.4. Completion of measures.

Theorem 4.16. A € L(RY) if and only if there exist F,G € B(R?) such that F C A C G and
MG —F)=0.

Corollary 4.17. Let N = {A CR? | \*(A) = 0}. Then A € L(R?) if and only if A= BUN for
some B € B(RY) and N € N.

Definition 4.18. Let N ={AC X |3IE € X, FD A, u(E)=0}. We say (X, X, u) is complete if
NCE.

Remark 4.19. If ¥ is given by Carathéodory (Theorem 3.22), then ¥ is pu-complete.

Definition 4.20. Let (X, X, 1) be a measure space. We define the completion of ¥ with respect to
the measure pu by

¥, € {ACX|3F,G e ¥ such that FC AC G and u(G — F) = 0}
For every A € ¥, find F, G as above and define i(A) = pu(F).
Proposition 4.21. ¥, is a o-algebra, [i is a measure on X, and (X,3,, 1) is complete.
Proposition 4.22. ¥, = o(XUN), and X, is the smallest p-complete o-algebra containing X.

Proposition 4.23. L(RY) = o(B(R?) UN), and L(R?) is the completion of B(R?) with respect
to A.

Remark 4.24. There could exist p-null sets that are not in 3.

5. Measurable Functions
5.1. Measurable functions.

Definition 5.1. Let (X,X, ) be a measurable space, and (Y, 7) a topological space. We say
f: X — Y is measurable if f~1(7) C %.

Remark 5.2. Y is typically [—oo, 00, R, or some linear space.

Remark 5.3. Any continuous function is Borel measurable, but not conversely.

Question 5.4. Say f: X — Y is measurable. For every B € B(Y), must f~}(B) € ©?
Theorem 5.5. Say f: X — Y is measurable. Then, for every B € B(Y'), we must have f~*(B) € ¥.

Lemma 5.6. Let f: X — Y be arbitrary, and ¥ be a o-algebra on X. Then ¥ = {A C Y|
f7Y(A) € X} is a o-algebra (on Y ).

Proposition 5.7. Suppose B(Y) = o(C) for some C CP(Y). Then f: X =Y is measurable if and
only if f~1(C) € X for all C €C.

Corollary 5.8. Let f: X — [—00,00]. Then [ is measurable if and only if for all a € R, we have
{f<a}ex.

Lemma 5.9. If f: X — R™ is measurable, and g: R™ — R"™ is Borel, then go f: X — R" is
measurable.

Question 5.10. Is the above true if g was Lebesgue measurable?



Theorem 5.11. Let f,: X — R be a sequence of measurable functions. Then sup f,, inf f,,
limsup f,,, liminf f,, and lim f,, (if it exists) are all measurable.

Lemma 5.12. Let f,g: X — R. The function (f,g): X — R? is measurable if and only if both f
and g are measurable.

Corollary 5.13. If f,g: X — R are measurable, then so is f + g, fg and f/g (when defined).
5.2. Cantor Function.

Definition 5.14 (Cantor function). Let C' be the Cantor set, and o = log2/log 3 be the Hausdorff
dimension of C. Let f(x) = Ho(C'N[0,2])/Ha(C).

(1) f(0)=0, f(1) =1 and f is increasing. (In fact, f is differentiable exactly on C¢, and f' =0
wherever defined.)

(2) f is continuous everywhere. (In fact f is Holder continuous with exponent o = log2/log 3.)

(3) Let g = f~!. That is, g(z) = inf{y | f(y) = x} (Note, since f is continuous f(g(z)) = x)).

Proposition 5.15. The function g: [0,1] — C is a strictly injective Borel measurable function.
Theorem 5.16. L(R) 2 B(R).

Theorem 5.17. There exists hy, ha: R — R such that hy is L(R)-measurable, hy is B(R) measurable,
but hy o ho is not L(R) measurable.

Remark 5.18. Note hg o hy has to be B(R)-measurable.
5.3. Almost Everywhere.

Definition 5.19. Let (X, ¥, 1) be a measure space. We say a property P holds almost everywhere
if there exists a null set N such that P holds on N°€.

Ezample 5.20. If f, g are two functions, we say f = g almost everywhere if {f # g} is a null set.
Example 5.21. Almost every real number is irrational.

Ezample 5.22. If A € L(R), then lim AMAN (2,2 + h))
h—0 h
HWS3, Q3b)

= 14(x) for almost every x. (Contrast with

Ezample 5.23. Let x € (0,1), and p, /g, be the n'" convergent in the continued fraction expansion

loggn _ 2

: s
of z. Then lim = Tlog3"

n— oo

Assume hereafter (X, X, 1) is complete.
Proposition 5.24. If f = g almost everywhere and f is measurable, then so is g.
Proposition 5.25. If (f,) — f almost everywhere, and each f, is measurable, then so is f.
5.4. Approximation.

Definition 5.26. A function s: X — R is called simple if s is measurable, and has finite range (i.e.
s(R) =A{a1,...an}).
Question 5.27. Why bother with simple functions?

Theorem 5.28. If f > 0 is a measurable function, then there exists a sequence of simple functions
(sn) which increases to f.



Corollary 5.29. If f: X — R is measurable, then there exists a sequence of simple functions (s,)
such that (sn) — f pointwise, and |s,| < |f].

Theorem 5.30 (Lusin). Let p be a finite regular measure on a metric space X. Let f: X — R be
measurable. For any & > 0 there exists a continuous function g: X — R such that p{f # g} < e.

Lemma 5.31 (Tietze’s extension theorem). If C C X is closed, and f: C' — R is continuous, then
there exist f: X — R such that f = f on C.

Lemma 5.32. Let f: X — R be measurable. For every € > 0, there exists C C X closed such that
WX —C) <eand f: C — R is continuous.

Proof of Lusin’s theorem. Previous two lemmas. O
Proof of Lemma 5.32. O
Remark 5.33. Tt is not true that for every measurable function f there exists a continuous function g
such that f = g almost everywhere.

6. Integration

6.1. Construction of the Lebesgue integral. Recall, s: X — R is simple if s is measurable and
has finite range.

Definition 6.1. Let s > 0 be a simple function. Let {a1,...,a,} = s(X), and set 4; = s7(a;).
Define [y sdp = >, a;A;.

Remark 6.2. Always use the convention 0 - co = 0.

Remark 6.3. Other notation: [y sdu = [ s(x)du(z).

Proposition 6.4. If 0 < s <t are simple, then [y sdu < [y tdp.
Proposition 6.5. If s,t >0 are simple, then [ (s+t)du = [y sdu+ [y tdu.

Definition 6.6. Let f: X — [0,00] be measurable. Define [, fdu = sup{[;sdu|0 < s <
f, s simple.}.

Definition 6.7. Let f: X — [—00, 0] be measurable. We say f is integrable if [, f du < oo and
Jx [~ dp < oo. In this case we define [ fdu= [y fTdu— [y [~ dp.

Definition 6.8. We let L'(X) = L'(X, %, i) be the set of all integrable functions on X. (Note
feL' < |fleLh)

Definition 6.9. We say f is integrable in the extended sense if either fX fTdu < oo or fX fdu<
oco. In this case we still define [ fdu= [y fTdu— [y f~dpu.

Remark 6.10. If both [y f*du = o0 and [ f~ du = oo, then [, fdu is not defined.
Question 6.11. Do we have linearity?

Proposition 6.12 (Consistency). If s = > 1 a;14, > 0 is simple, then Y a;u(A;) = sup{ [ t dp |
0 <t<s, simple}.

Theorem 6.13 (Monotone convergence). Say (fn) — f almost everywhere, 0 < fn, < fny1, then
(Jx frdm) = [x fdp.
Theorem 6.14. If f, g are integrable, then [ (f +g)dp= [y fdu+ [y gdu.



6.2. Dominated convergence. When does lim fX fndu # fX fdu? Two typical situations where
it fails:

(1) Mass escapes to infinity
(2) Mass clusters at a point

Theorem 6.15 (Dominated convergence). Say (f.) is a sequence of measurable functions, such
that (fn) — f almost everywhere. Moreover, there exists F' € L*(X) such that |f,| < F almost
everywhere. Then limy, oo [ frndp = [y fdp.

Lemma 6.16 (Fatou). Suppose f, >0, and (fn) = f. Then liminf [ f, dp > [y fdpu.
Proof of Theorem 6.15
Theorem 6.17 (Beppo-Levi). If f, >0, then Y.7° [ fadp = [ (O07 fn) dp.

Theorem 6.18. If f: R? — R is Riemann integrable, then the Riemann integral of f is the same
as the Lebesgue integral.

Proof. IOU O

Question 6.19. Let f: [0,00) — R be measurable, and define the Laplace transform of f by
F(s) = [ e st f(t)dt. Is F continuous? Is F differentiable?

Question 6.20. Let ¢ be a bump function, and (q,) be an enumeration of the rationals. Define
f@) =5 0(2"(x — qn)). Is f finite almost everywhere?

6.3. Push forward measures.

Definition 6.21. Say f: X — R? is integrable, then define

/deu:(/xfldu,...,/xfddu),wheref:<f1,...,fd)-

Theorem 6.22. Let (X,%, 1) be a measure space, f: X =Y be arbitrary. Definet ={ACY |
f7(A) € B}, and define v(A) = u(f~*(A)). Thenv is a measure on (Y,7) and [y, gdv = [, gof dp.

Remark 6.23. The measure v is called the push forward of p and denoted by f*(j), or pp-1. This
is used often to define Laws of random variables. (We will use it to prove the change of variable
formula.)

Corollary 6.24. If a € R?, then [p. f(z + @) dN(@) = [g. f(x) dA(z).

7. Convergence
7.1. Modes of convergence.

Definition 7.1. We say (f,) — f almost everywhere if for almost every z € X, we have (f,(x)) —

f(=).

Definition 7.2. We say (f,) — f in measure (notation (f,) £ f) if for all € > 0, we have

(W{lfn = fI > €}) = 0.
Definition 7.3. Let p € [1,00). We say (fn) — f in LP if ([ |fn — f|P dp) — 0.
Question 7.4. Why p > 12 How about p = c0?

(1) (fn) — f almost everywhere implies (f,,) — f in measure if u(X) < co.



(2) (fn) — f in measure implies (f,,) — f almost everywhere along a subsequence.

(3) (fn) — f in L? implies (f,) — f in measure (for p < o), and hence (f,) — f along a
subsequence.

(4) Convergence almost everywhere or in measure don’t imply convergence in LP.

Theorem 7.5. If (f,) — f almost everywhere and u(X) < oo, then (f,) — f in measure.

Lemma 7.6 (Egorov). If (f,) — f almost everywhere and p(X) < oo, for every e > 0 there exists
A. such that u(AS) < e and (fn) — f uniformly on A..

Remark 7.7. This does not imply (f,) — f uniformly almost everywhere.
Proof of Theorem 7.5
Proposition 7.8. If (f,) — f in measure then (f,) need not converge to f almost everywhere.

Proposition 7.9. If (f,) — f in measure, then there exists a subsequence (fy, ) such that (fn,) — f
almost everywhere.

Lemma 7.10 (Borel Cantelli). If > u(Ag) < oo, then almost every x belongs to only finitely many
Ay (ie. p{x |z € Ay infinitely often} = 0).

Proof of Proposition 7.9. O
7.2. LP spaces.

Definition 7.11. A Banach space is a normed vector space that is complete under the metric
induced by the norm.

Ezample 7.12. C, R4, C(X), etc. are all Banach spaces.
1/p
Definition 7.13. For p € (0, 00), define || f||, = (/ [fIP d,u) .
X

Definition 7.14. For p = oo, define || f||oc = esssup|f| = inf{C > 0] |f| < C almost surely}

Definition 7.15. Let (X, X, 1) be a measure space, and assume X is u-complete. Define LP(X) =
{f: X = R[[fllp < oo}

Question 7.16. Is £P(X) a Banach space?
Definition 7.17. Define an equivalence relation on £P by f ~ g if f = g almost everywhere.
Definition 7.18. Define L?(X) = LP(X)/ ~.

Remark 7.19. We will always treat elements of LP(X) as functions, implicitly identifying a function
with its equivalence class under the relation ~. In order to be logically correct, however, we need to
ensure that every operation we perform on functions respects the equivalence relation ~.

Theorem 7.20. Forp € [1,00], LP(X) is a Banach space.

Theorem 7.21 (Holder’s inequality). Say p,q € [1,00] with 1/p+1/q=1. If f € L? and g € L9,
then fg € L' and | [ fgdul < ||flpllgllq-

Remark 7.22. The relation between p and ¢ can be motivated by dimension counting, or scaling.

Brute force proof of Theorem 7.21
Proof of Theorem 7.21 using Young’s inequality.



Theorem 7.23 (Young’s inequality). If z,y >0, 1/p+1/q =1 then xy < 2P /p+ y?/q.
Lemma 7.24 (Duality). Ifp € [1,00), 1/p+1/q =1, then

1

[fllp = sup 7/ fgdu = sup / fgdp.
geLi—o [|9llq llgllq=1

Remark 7.25. For p = oo this is still true if X is o-finite.

Theorem 7.26 (Minkowski’s inequality). If f,g € LP, then f+g € LP and ||f+gllp < | fllp +119llp-

Theorem 7.27 (Jensen’s inequality). If u(X) =1, f € L'(X), a < f < b almost everywhere, and

@ : (a,b) = R is convez, then
<p(/ fdu)é/wfdu-
X X

Proof of Theorem 7.20: Only remains to show LP is complete.

Lemma 7.28. Suppose p < oo, fn, € LP and > ||fullp < c0. Let f = > f,. Then f € LP,
1Ny < Dl fnllps 2o fn — fin LP and )" f,, — f almost everywhere.

Proof of Theorem 7.20:
Proposition 7.29. Ifp € [1,00), (fn) = [ in LP, then (f,) — f in measure.

1
Lemma 7.30 (Chebychev’s inequality). For any A > 0, we have u({|f| > A}) < X”le

Proof of Proposition 7.29
7.3. Uniform integrability.

Question 7.31. When does convergence in measure imply L' convergence?

Theorem 7.32 (Vitali). Let (f,) € L'(X). The sequence (f,) is convergent in L' if and only if
(1) (fn) converges in measure,
(2) (fn) is uniformly integrable,
(3) (fa) is tight
Definition 7.33. Let {f, | @ € A} be a family measurable functions on (X, ¥).
(1) The family {f, | a € A} is uniformly integrable if for all € > 0 there exists § > 0 such that
whenever p(E) < ¢ we have [, |f|dp < e.
(2) The family {f, | o € A} is tight if for every ¢ > 0 there exists F' € ¥ with p(F) < oo such
that [,.|faldu < e for all o € A.

Proposition 7.34. If |f,| < F for alla € A, and F € L', then {f, | a € A} is both uniformly
integrable, and tight.

Proof:

Proof of Theorem 7.32

A—=00 pn

Theorem 7.35. If lim sup/ |frldp =0, then (f,) is uniformly integrable.
{lfn>A}

Theorem 7.36. If there exists an increasing function ¢: [0,00) — [0,00) such that lim d
oo I

= 00,

and sup/ o(|fn]) du < 00, then (f,) is uniformly integrable.
n Jx



Remark 7.37. The hypothesis in both the above theorems are equivalent.

Remark 7.38. If additionally sup,, f x| fnldp < oo, then the converse of both the above theorems are
true.

Proof:

Corollary 7.39. If (f,) — f in measure, p(X) < oo, and sup, |/ f|l, < oo for any p > 1, then
(fn) = f in LY for every q € [1,p).

8. Signed Measures

8.1. Hanh and Jordan Decomposition Theorems.

Definition 8.1. We say p: ¥ — [—o00, 0] is a signed measure if:

(1) The range of u doesn’t contain both +oo and —oc.

(2) u(0) =0
(3) If A; € ¥ are countably many pairwise disjoint sets then pu(Us°A;) = 7% u(A;).

Example 8.2. Let f € L'(X, uu), and define v by v(A) = [, fdu. Then v is a signed measure, and
we write dv = f du.

Example 8.3. If p, v are two (positive) measures such that either one is finite, then p — v is a signed
measure.

Definition 8.4. We say A € ¥ is a negative set if u(B) < 0 for all B € ¥ with B C A. We say
A € X is a positive set if u(B) >0 for all B € ¥ with B C A.

Theorem 8.5 (Hanh decomposition). If p is a signed measure on X, then X = P U N where P is
positive and N 1is negative.

Remark 8.6. The decomposition is unique up to null sets.
Lemma 8.7. If u(A) € (—o0,00) then there exists B C A such that B is negative and p(B) < p(A).
Proof: Proof of Theorem 8.5:

Theorem 8.8 (Jordan Decomposition). Any signed measure can be expressed (uniquely) as the
difference of two mutually singular positive measures.

Definition 8.9. We say two positive measures u, v are mutually singular if there exists C C X
such that for every A € ¥ we have p(ANC)=v(ANC) =0.

Proof of Theorem 8.8

Definition 8.10. Let i be a signed measure with Jordan decomposition y = u+ — p~. Define the
variation of 4 to be the (positive) measure |p| = put + p—.

Definition 8.11. Define the total variation of p by ||u|| = |u|(X).

Proposition 8.12. Let M be the set of all finite signed measures on X. Then M is a Banach
space under the total variation norm.



8.2. Absolute Continuity.

Definition 8.13. Let u,v be two measures. We say v is absolutely continuous with respect to p
(notation v <« ) if whenever p(A) = 0 we have v(A) = 0.

Exzample 8.14. Let g > 0 and define v(A) = [, gdu. (Notation: Say dv = gdp.)

Theorem 8.15 (Radon-Nikodym). If u,v are two positive o-finite measures such v < p, then there
exists a unique measurable function g such that 0 < g < oo almost everywhere and dv = gdp.

Theorem 8.16 (Lebesgue Decomposition). Let u,v be positive measures such that v is o-finite.
There exists a unique pair of measures (Vae,Vs) such that ve. < p, vs L, and v = v4. + vs.

Corollary 8.17. Let p be a positive measure, and v be a finite signed measure. There exists a
unique pair of signed measures (Vae, Vs) such that vee < pu, v L pand v = vy + vs.

Corollary 8.18. Let u,v be o-finite positive measures. There exists a unique positive measure Vg
and nonnegative measurable function g such that p L vs and dv = dvs + g dpu.

8.3. Dual of LP.

Proposition 8.19. Let U,V be Banach spaces, and T: U — V be linear. Then T is continuous if
and only if there exists ¢ < oo such that | Tullv < c|lully for allue U, v e V.

Definition 8.20. We say T: U — V is a bounded linear transformation if 7" is linear and there
exists ¢ < 0o such that |[Tully < c|luljy for all u e U, v € V.

Definition 8.21. The dual of U is defined by
U* ={u"|u*: U — R is bounded and linear.}

Define a norm on U* by

, 1 1
o E sup ——ut(u) = sup ——u*(u) =
herllo- = oo e ) = 5 gy ™)

u* (u)]-

sup ——
[Jlullu=1 Hu”U
Proposition 8.22. The dual of a Banach space is a Banach space.

Proposition 8.23. Let1/p+1/¢=1, g € LYX). DefineT,: LP - R by T, f = fX fgdu. Then
T, € (L?)*.

Proposition 8.24. The map g — Ty is a bounded linear map from LT — (LP)*.

Theorem 8.25. Let (X,X, 1) be a o-finite measure space, p € [1,00), 1/p+1/q = 1. The map
g — Ty is a bijective linear isometry between LY and (L¥)*.

Remark 8.26. For p € (1,00) the above is still true even if X is not o-finite.

Remark 8.27. For p = oo, the map g — T, gives an injective linear isometry of L' — (L>°)*). It is
not surjective in most cases.

8.4. Riesz Representation Theorem.

Theorem 8.28 (Riesz Representation Theorem). Let X be a compact metric space, and M be the
set of all finite signed measures on X. Define A: M — C(X)* by A, (f) = [y fdu for all pe M
and f € C(X). Then A is a bijective linear isometry.

Remark 8.29. In particular, for every I € C'(X)*, there exists a unique finite regular Borel measure
p such that I(f) = [ fdu for every f e C(X).



9. Product measures

1. Fubini and Tonelli theorems. Let (X,X%, ) and (Y, 7,v) be two measure spaces. Define
Yx7={AXxB|AeX, Ber},and X7 =0(2 X 7).

Theorem 9.1. Let p,v be two o-finite measures. There exists a unique measure ™ on ¥ @ T such
that m(A x B) = p(A)v(B) for every A€ X, BeET.

Theorem 9.2 (Tonelli). Let f: X XY — [0,00] be ¥ ® 7-measurable. For every xg € X, yo € Y
the functions © — f(x,y0) and y — f(xo,y) are measurable. Moreover,

[ e = [ [ st )
(9.1) :/yey(/xex f(m)du(x)) dv(y).

Theorem 9.3 (Fubini). If f € L'(X x Y,7) then for almost every xo € X, yo € Y, the functions
x> f(z,y0) and y — f(xo,y) are integrable in x and y respectively. Moreover,(9.1) holds.

Lemma 9.4. For every EC X XY, x € X, y €Y define the horizontal and vertical slices of E by
Hy(E)={ze X |(z,y) € E} and Vo(E) ={y €Y | (z,y) € E}.

(1) For every x € X, y € Y we have Hy(E) € ¥ and V,(E) € 7.

(2) The functions v — v(V4(E)) and y — p(Hy(E)) are measurable.

Proof of Theorem 9.1
Proof of Theorem 9.2
Proof of Theorem 9.3

Theorem 9.5 (Layer Cake). If f: X — [0, 00] is measurable then/ fdu= / u(f >1t)dt
X 0

o0 o oo o0 o0
Proposition 9.6. If (ap, ) are such that Z |@m n| < o0, then Z z mn = Z Z -

m,n=0 m=0n=0 n=0m=0

Theorem 9.7 (Minkowski’s inequality). If f: X x Y — R is measurable, then

/‘/f:cydv " du(x) Up //If:cy\pdu ))pV(y>

9.2. Convolutions.

Definition 9.8. If f,g € L'(RY) define the convolution by f * g(x / flz —y)gy)dy
» fy)g(z —y)dy.
Remark 9.9. If f,g € L'(R?), then f * g < oo almost everywhere.
Theorem 9.10 (Young). If % + % =1+1, feLr(RY), g€ LYR?) then f g € L"(R?), and
If gl < fllzellgllza.

Remark 9.11. One can show ||f * gl|, < Cpqllfllpllgllq for some constant Cj, ; < 1. The optimal
constant can be found by choosing f, g to be Gaussian’s.



Definition 9.12. (¢,) is an approzimate identity if: (1) ¢, >0, (2) [za ¥n =1, and (3) Ve > 0,

lim on(y)dy = 0.
n=0 Jjy[>e}

Ezample 9.13. Let ¢ > 0 be any function with [, ¢ = 1, and set ¢, = E%cp(f)
Ezample 9.14. Gy(z) = (2mt)~ 42 exp(—|z|?/(2t)), for x € R?.

Proposition 9.15. Ifp € [1,00), f € L?, and (¢n) is an approximate identity, then @, x f — [ in
LP.

Remark 9.16. For p = co the above is still true at points where f is continuous.

9.3. Fourier Series. Let X = [0,1] with the Lebesgue measure. For n € Z define e, (z) = 2™
and given f,g € L*(X,C) define (f,g) = [ fgdA. This defines an inner product on L*(X), and

1172 = (£, f)-
Definition 9.17. If f € L?, n € Z, define the n'" Fourier coefficient of f by f(n) ={(f,en).

Definition 9.18. For N € N, let Sy f = ZJXN f(n)en, be the N-th partial sum of the Fourier
Series of f.

Question 9.19. Does Sy f — f¢ In what sense?
Lemma 9.20. (e,,em) = dpnm-

Corollary 9.21. Letp € span{e_p,...,ex}. Then {(f —Snf,p) = 0. Consequently, || f —Snf|l2 <
If =l

sin(2m(N + 3)z)
sin(mx)

Proposition 9.22. Sy f = Dy x f, where Dy =
the Dirichlet Kernels.

Proposition 9.23. Define the Cesaro sum by on f = % (])V_l Snf. Then onf = Fn * f, where
- i(sin(Nmr))?

N =5\ G )

Remark 9.24. The functions F are called the Fejér Kernels.

. The functions Dy are called

sin(mx)

Proposition 9.25. The Fejér kernels are an approximate identity, but the Dirichlet kernels are not.
Corollary 9.26. Ifp € [1,00) and f € LP, then onf — f in LP.

Corollary 9.27. If f € L? then Sy f — f in L?.

Theorem 9.28. Ifp € (1,00), f € LP then Sy f — f in LP.

Proof. The proof requires boundedness of the Hilbert transform and is beyond the scope of this
course. O

Theorem 9.29. If f € L™ and is Holder continuous at x with any exponent o > 0, then S, f(xz) — x.
Proof. On homework. O

Remark 9.30. If f is simply continuous at x, then certainly o, f(x) — f(x), but S, f(z) need not
converge to f(x). In fact, for almost every continuous periodic function function, Sy f diverges on a
dense Gs.



The next few results establish a connection between the regularity (differentiability) of a function
and decay of its Fourier coefficients.

Theorem 9.31 (Riemann Lebesgue). Let u be a finite measure and set fi(n) = fol Endp. If p < A,
then (fi(n)) — 0 as n — oo.

Theorem 9.32 (Parseval’s equality). If f € L2([0,1]) then ||f]l;z = || f]lz2.
Question 9.33. What are the Fourier coefficients of f'?
Definition 9.34. We say g is a weak derivative of f if (f,¢’) = —(g,¢) for all ¢ € C$2.(]0,1]).

‘per
Proposition 9.35. If f € L' has a weak derivative f' € L', then (f')"(n) = 2minf(n).
Corollary 9.36. If f € L? has a weak derivative f' € L?, then Y[(1+ |n|)|f(n)]]? < co.

Definition 9.37. For s > 0, let H, = {f € L2 |||f|lgs < oo}, where || f||%. = S2(1+ |n])2| f(n)]2.

per
Remark 9.38. H* is essentially the space of L? functions that also have s “weak derivatives” in L2.

Theorem 9.39 (1D Sobolev Embedding). If s > 1 and H,,. C Cper([0,1]) and the inclusion map
18 continuous.

Remark 9.40. Need s > % The theorem is false when s = 1/2.
Remark 9.41. In d dimensions the above is still true if you assume s > d/2.

Remark 9.42. More generally one can show for a € (0,1), s = 3 +n+a, H5, C C™°.

per

Theorem 9.43 (1D Sobolev embedding). If s > § — 5, then H;,. C L*" and the inclusion map is
continuous.

Remark 9.44. The above is true for s = % - %, for some p € [1,00) but our proof won’t work.

10. Differentiation
10.1. Lebesgue Differentiation.

Theorem 10.1 (Fundamental theorem of Calculus 1). If f is continuous and F(x) = f0$ f(¢)dt,
then F is differentiable and F' = f.

Theorem 10.2 (Fundamental theorem of Calculus 2). If f is Riemann integrable, and F' = f,
then [° f = F(b) — F(a).

Our goal is to generalize these to Lebesgue integrable functions.

Theorem 10.3 (Lebesgue Differentiation). If f € L'(R?), then for almost every x € RY, lim

f(z).
Lemma 10.4 (Vitali Covering Lemma). Let W C UYN B(x;,7;). There exists S C {1,..., N} such
that:

(1) {B(x;, ;) |i € S} are pairwise disjoint.
(2) W C UsesB(xi,3r;) and hence |W| < 3¢ Y ics B(wi,ri).

e—0 |B(J,‘, E)| B(z,e)

fdx =



Definition 10.5 (Maximal function). Let u be a finite (signed) Borel measure on R?. Define the
mazximal function of u by

o (B 1)
M) =50 B, )

) d
Proposition 10.6. My € LY, and [Mp > of < 2-||pl.

Corollary 10.7. If f € L*(R?), then |[{M f > a}| < %HfHLl

1
Proposition 10.8. If f € LY(RY), then lim ———— |f(y) = f(z)|dy = 0 almost every-
r—0 |B(3;‘,7‘)| ly—z|<r

where.
Remark 10.9. This immediately implies Theorem 10.3.

Corollary 10.10. If u < X is a finite signed measure, then the Radon-Nikodym derivative is given

du . u(Bla,r)
by = = lim o
Yax =50 Bz, )]

Remark 10.11. Will use this to prove the change of variables formula.

Theorem 10.12. Let p be a finite signed measure which is mutually singular with respect to the
Lebesgue measure.

(1) Z—ﬁ = 0, A-almost everywhere.

(2) % = 00, |p|-almost everywhere.
10.2. Fundamental theorem of calculus.
Question 10.13. Does f: [0,1] — R differentiable almost everywhere imply f' € L'?
Question 10.14. Does f: [0,1] — R differentiable almost everywhere, and f' € L' imply f(x) =
Jo 1'?
Definition 10.15. We say f: R — R is absolutely continuous if for every € > 0 there exists
d > 0 such that for every finite disjoint collection of intervals (x1,41), ..., (N, yn), such that

N N
Doy |z — | <6, we have > 7 | f(z:) — fly)] <e.
Remark 10.16. Any absolutely continuous function is continuous, but not conversely.

Theorem 10.17. Let f: [a,b] — R be measurable. Then f is absolutely continuous if and only if f
is differentiable almost everywhere, f' € L', and f(z) — f(a) = ff ' everywhere.

Proof of the reverse implication of Theorem 10.17

Lemma 10.18. If f is absolutely continuous, monotone and injective, then f is differentiable almost
everywhere, f' € L' and f(x) — f(a) = f; I everywhere.

Lemma 10.19. If f is absolutely continuous and monotone, then f is differentiable almost every-
where, f' € L* and f(x) — f(a) = f; ' almost everywhere.

Lemma 10.20. If f is absolutely continuous then there exist g, h increasing such that f = g — h.

Proof of the forward implication of Theorem 10.17. Follows immediately from the previous lemmas.
O



10.3. Change of variables.
Theorem 10.21. Let U,V C R? be open and ¢: U — V be C and bijective. If f € L*(V), then

/ fdx= / fop|det Vip| dA.
v U

The main idea behind the proof is as follows: Let u(A) = A(p(A4)).
Lemma 10.22. p is a Borel measure and [, fopdu = [, fdX.
Lemma 10.23. u << A

_ i HBE )
r—=0 |B(z,T)]
Proof of Theorem 10.21. Follows immediately from the above Lemmas. |

Proof of Lemma 10.22
Proof of Lemma 10.23
Proof of Lemma 10.24

Lemma 10.24. Dy = |det V|, where Dy(x)

11. Fourier Transform

11.1. Definition and Basic Properties.

(1) Recallif f € L2,.([0,1]), we set e, (z) = e*™"", a, = fol f(x)e=2m"® 4y and got f = anpe, in
L2,

(2) Suppose now f € L?

‘per

([-L/2,L/2]). Can we rescale and send L — co?
Definition 11.1. If f € LY(R?), ¢ € R, define the Fourier transform of f (denoted by f) by
f) = [ fa)e e da

Rd

Remark 11.2. More generally, if p is a finite (signed) Borel measure, then can define [i(§) =

/ ef2m‘<m,§) du(x)
R4

Analogous to Fourier series, we will show that f is defined even for f € L?, and prove f(z) =

[ d@ermac
Rd

Lemma 11.3 (Linearity). If f,g € L*, a € R then (f + ag)" = f + ag.
Lemma 11.4 (Translation). Let 7, f(z) = f(z —y). Then
(1)) (&) = e 2T f(g).
Lemma 11.5 (Dilations). Let 6xf(z) = 37 f(%). Then (6xf)"(§) = FINE).
Lemma 11.6. If f,g € L', then (f x g)" = f§.
Lemma 11.7. If (1 + |z|)f(x) € L*(R?) then ajf(g) = (—2miz; f(z))"(€).
Lemma 11.8. If f € CL, 8;f € L', then (9;f)"(€) = 2mi&; f(£).
Theorem 11.9 (Riemann-Lebesgue Lemma). If f € L', then f € Co and || ||~ < ||f]lz1-



11.2. Fourier Inversion.

Theorem 11.10 (Inversion). If f, f € L*, then f(z) = F(&)et2mi®) ge.
Rd

Direct proof attempt:

Lemma 11.11. If G(z) = (2r)~¥2e712I/2 then G(¢) = e 127¢I°/2 and hence G=a.
Lemma 11.12. If f,g € L' then [p, f§ = [z fg.

Lemma 11.13. If f € C(RY) N LY (R?) and f € L'(R?), then

fla) = [ Fermite ag.
Rd
Proof of Theorem 11.10.
Remark 11.14. If f, f € L*, then ||f — ¢c * f|l~ < ||f — (e * )| — 0

Remark 11.15. If f, f € L' then f(x) = f(—x).
11.3. L2-theory.

Theorem 11.16 (Plancherel). The Fourier transform extends to a bijective linear isometry on
L?(R%; C).

Definition 11.17. Define the Schwartz space, S, to be the set of all smooth functions such that
sup, (1 + |z|™)|D*f(z)| < oo for all n € N and multi-indexes a.

Remark 11.18. Note C°(R%) C S, and so S is a dense subset of LP(R?) for all p € [1, c0).
Lemma 11.19. If f,g € S, then [p, f gdx = fRdfﬁdf.

Proof of Theorem 11.16

Definition 11.20. Let s > 0 and define the Sobolev space of index s by

N /
HY = {f € PR ||l <och, where |l = ([ 0+ ePyIF@R )

Remark 11.21. A function f € H! if and only if f and all first order weak derivatives are in L?.
Remark 11.22. For s < 0, one needs to define H® as the completion of S under the H® norm.
Proposition 11.23. Let s € (0,1). Then f € H® if and only if

N = Tnfllz2\? dh
/0( BE )hd<°°‘

Remark 11.24. For s = 1, we instead need sup, |17\Hf —1nfllL2 < 0.

Remark 11.25. If s € (0, 1], then there exists C' = C(s) such that ||f — 7. f]|r2 < C|h|®||f||L2 for all
feHs heR?

Theorem 11.26 (Sobolev embedding). If s > d/2 then H*(R?) C Cy(R?), and the inclusion map
18 continuous.

Corollary 11.27. If s > n+d/2, then H*(R?) C C7(R?) and the inclusion map is continuous.

Proposition 11.28 (Elliptic regularity). Say f € S(R?), u € H?(R?) is such thatl l‘im |z]¢|Vu(z)| =
T|—00

0 and —Au = f, thenu € S.



Appendix A. The d-dimensional Hausdorff measure in R

Let (X, d) be any metric space, § > 0, a > 0 and H_ ;5 be the outer measure defined by

2s(A) = {3 pa(E)

diam(E;) < ¢, and A C GE]} )
1

where

/2 iam o
p“(A):F(1+g)(d 2(A)) ’

Remark A.1. The function p, above are chosen so that if A = B(0,7) C R?, then pg(A) = |A|.
Definition A.2. Let H} = lims_,o H.

Proposition A.3 (From homework 2). The outer measure H} restricts to a measure on the Borel
o-algebra.

Theorem A.4. If X =R?, and a = d then H, = \ (the Lebesgue measure).
Lemma A.5 (Infinite Vitali’s Covering Lemma). Let W C UneaB(%qa,7a), with supr, < co. There
exists a countable set T C A such that:

(1) {B(xi,r;) |t € I} are pairwise disjoint.

(2) W C Usez B(x4,57;) and hence [W| < 595 o B(xy,ry).

€S
Lemma A.6. Let U C R be open and § > 0. There exists countably many x; € U, r; € (0,8) such
that B(xz;,r;) C U, are pasrwise disjoint, and |U — UB(x;,1;)| = 0.
Lemma A.7. H; < A
Theorem A.8 (Isodiametric inequality).
|A| < |B(0,1/2)| diam(A)? = | B(0, diam(A)/2)|
Remark A.9. Note A need not be contained in a ball of radius diam(A)/2.
Proof of Theorem A.J.

Proposition A.10 (Steiner Symmetrization). Let P C R be a hyperplane with unit normal #. Let
A€ LRY). There exists Sp(A) € L(RY) such that:
(1) Sp(A) is symmetric about P (i.e. for any x € P, t € R, we have x + th € Sp(A) <=
x—th e Sp(A)).
(2) diam(Sp(A)) < diam(A).
(3) 1Sp(A)] = |A].

Proof of Theorem A.8
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