Slide from today are in chat hat time : $\exists i \text{ Band}$ comments the balls of (crall diame) $\forall i \in [I]$ $\forall eelle I.$ r s R a curre, $\lambda(\Gamma) = 0$

- 4. Abstract measures
- 4.1. Dynkin systems.

Question 4.1. Say μ, ν are two measures such that $\mu = \nu$ on $\Pi \subseteq \Sigma$. Must $\mu = \nu$ on $\sigma(\Pi)$?

 \triangleright Clearly need \prod to be closed under intersections.

Question 4.2. Let
$$\underline{\Lambda} = \{\underline{A} \in \Sigma \mid \mu(A) = \nu(A)\}$$
. Must Λ be a σ -algebra? (hind $\mu(A) = \nu(A)$) \mathcal{F}
 \Rightarrow If $A, B \in \Lambda$, must $A \cup B \in \Lambda$? $\xrightarrow{\sim}$ Since
 \Rightarrow If $A \subseteq B, A, B \in \Lambda$, must $\underline{B} - A \in \Lambda$? \swarrow (e.g.)
 \Rightarrow If $A_i \subseteq A_{i+1} \in \Lambda$, must $\bigcup_{i=1}^{\infty} A_i \in \Lambda$? \swarrow (e.g.)
 $\downarrow (B - A) = \mu(B) - \mu(A)$ \swarrow (e.g.)
 $\mu(B - A) = \mu(B) - \mu(A)$ \swarrow (B - A)
 $\downarrow (B - A) = \mu(B) - \mu(A)$ \checkmark (B - A)
 $\downarrow (B - A) = \mu(B) - \mu(A)$ \backsim (B - A)
 $\downarrow (B - A) = \mu(B) - \mu(A)$ \backsim (B - A)
 $\downarrow (B - A) = \mu(B) - \mu(A) = \mu(B - A)$
 $\downarrow (B - A) = \mu(A) = \mu(A) = \nu(B - A)$
 $\downarrow (B - A) = \mu(A) = \mu(A) = \mu(A)$ $\downarrow (A - A)$
 $\downarrow (B - A) = \mu(A) = \mu(A) = \mu(A)$ $\downarrow (A - A)$
 $\downarrow (B - A) = \mu(A) = \mu(A)$ $\downarrow (A - A)$
 $\downarrow (B - A) = \mu(A) = \mu(A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A) = \mu(A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A) = \mu(A)$ $\downarrow (A - A)$ $\downarrow (A - A)$ $\downarrow (A - A)$
 $\downarrow (A - A)$ $\downarrow (A - A)$ $\downarrow (A - A)$ $\downarrow (A - A)$ $\downarrow (A - A)$ $\downarrow (A - A)$

Definition 4.3. We say $\Lambda \subseteq \mathcal{P}(X)$ is a λ -system if: (=> N ie clauser man complementes). (1) $X \in \Lambda$ (2) If $A \subseteq B$ and $A, B \in \Lambda$ then $B - A \in \Lambda$. (3) If $A_n \in \Lambda$, $A_n \subseteq A_{n+1}$ then $\cup_1^{\infty} A_n \in \Lambda$. **Definition 4.4.** We say $\Pi \subseteq \mathcal{P}(X)$ is a π -system if whenever $A, B \in \Pi$, we have $A \cap B \in \Pi$. **Lemma 4.5** (Dynkin system lemma). If Π is a π -system, and $\Lambda \supseteq \Pi$, then $\Lambda \supseteq \sigma(\Pi)$. $\Lambda \models G(\Pi)$. **Corollary 4.6.** If μ , ν are finite measures such that $\mu = \nu$ on Π , and Π is closed under intersections, then $\mu = \nu$ on $\sigma(\Pi)$. $= P_{K} a_{k} cov : A bane = 2(A) = 2(A)^{2} is a \lambda - cys.$ $Dynkin \Rightarrow \{A \mid p(A) = \nu(A)\} \supseteq \sigma(R)$ \rightarrow $m = v = w = \tau(n)_{Q \in D}$

2-515 gar by / You cherk. Proof of Lemma 4.5 The arbitrary intersection of λ -systems is a λ -system. So it make sense to talk about $\lambda(\Pi)$. (1)If $\Lambda \supseteq \Pi$, then $\Lambda \supseteq \lambda(\Pi)$. (2)(3) If Λ is both a π -system and a λ -system, then Λ is a σ -algebra. Only NTS: A, BEN => AUBGN $(AUB) = \begin{pmatrix} A & 1B \\ A & 0 \\ C & A \\ C$ complant. centale incerion (2) Whe $\forall A_{-} = \bigcup_{n \in I} (\bigcup_{i=1}^{n} A_{i})$ DED > chance mines belong > OED,

(4) To finish the proof, we only need to show
$$\lambda(\Pi)$$
 is closed under intersections.
(5) Let $C \in \lambda(\Pi)$, and define $\Lambda_C = \{\underline{B} \in \lambda(\Pi) \mid B \cap C \in \lambda(\Pi)\}$. Then Λ_C is a λ -system.
Proof E is $(D \times E \cap \Lambda_C)$
(3) $T_D = A_1 \subseteq A_2$, $A_0 \in \Lambda_C$, $NTS = A_2 - A \in \Lambda_C$
i-e. $NTS = (A_2 - A_1) \cap C \in \lambda(\Pi)$
($A_2 - A_1) \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1) \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 = A_1 \cap C = (A_1 \cap C)$
($A_1 - A_2 = A_1 \cap C = (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 = A_1 \cap C = (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_2 - A_1 \cap C = (A_2 \cap C) - (A_1 \cap C)$
($A_1 - A_2 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C \cap C \cap C)$
($A_2 - A_1 \cap C$

Next: YBE X(17). MR=ZELEABEN(M)Z is a N-system. $A_B \ge \Pi$ (by previous part) $\gg \Lambda_{B}^{2} \lambda(R)$ $\forall E \in \lambda(R)$, $E \cap B \in \lambda(R)$ > $\lambda(n)$ is a π -system > rolg => QED.

4.2. Regularity of measures.

Definition 4.7. Let X be a metric space, and μ be a Borel measure on X. We say μ is regular if:

- (1) For all compact sets \underline{K} , we have $\mu(\underline{K}) < \infty$. (2) For all open sets U we have $\mu(\underline{U}) = \sup\{\mu(\underline{K}) \mid K \subseteq U \text{ is compact}\}.$
- (3) For all Borel sets A we have $\mu(A) = \inf\{\mu(U) \mid U \supseteq A, U \text{ open}\}.$

Motivation:

- ▷ Approximation of measurable functions by continuous functions
- \triangleright Differentiation of measures
- ▷ Uniqueness in the Riesz representation theorem

Question 4.8. If μ is regular, is $\mu(A) = \sup\{\mu(K) \mid K \subseteq A, K \text{ compact}\}$ for all Borel sets A?