


Theorem 3.22 (Carathéodory extension). Let ¥ = {E C X | p(A) = p (ANE)+p (AN E“’)jVA CX}. Then ¥ isa UM

and p* is a measure on (X, ). —_—

Remark 3.23. Clearly p*(A) < p*(ANE) 4+ p* (AN E°) for all E, A.

Intuition: Suppose p* = A*. In order to show|u*(A) > p*(ANE) + p*(AN E°),|cover A by cells so that p*(A) > > () —e.
Split this cover into cells that intersect £ and cells thati C . is mice; hiopefully the overlap is small.




Proof of Theorem 3.22
A1) 0 ex.
%2) Ee¥ = E°eX.
(3) E,F €Y = FEUF €X. (Hence Fy,...,E, €¥ — U'E, € ¥.)
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(4) If By, ..., E, € ¥ are pairwise disjoint, A C X, then p*(AN (ULE;)) = > p* (AN E;).
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(5) X is closed under countable disjoint unions, and p* is countably additive on X.

Proof: Let Ey, Fs, ..., € ¥ be pairwise disjoint, and A C X be arbitrary.
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Remark 3.24. Note, the above shows p*(AN (UFE;)) = > " p* (AN E;).




Definition 3.25. Define the Lebesgue o-algebra by L(R?) = {E | \*(A) = A*(ANE) N (ANE°) VA C R%}.
— T~ T —_ -
Definition 3.26. Define the Lebesgue measure by A(E) = A*(E) for all E € L(R?).
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Remark 3.27. By Carathéodory, £(R?) is a o-algebra, and A iIs a measure on L. C &‘1&0\‘ ", >

Question 3.28. Is L(R?) non-trivial?
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Proposition 3.29. If I C R? is a cell, then I € L(RY). @
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Here are two results that will be proved later:
-
Theorem 3.32. L(RY) 2 B(RY).| (In fact the cardinality of L(R?) is larger than that of B(R?).)
Theorem 3.33.| L(RY) C P(RY).
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Theorem 3.34 (Uniqueness ). If p is any measure on (RY, B(RY)) such that u(I) = \(I) for all cells, then u(E) = \(E) for all
E € B(RY). — -

@uestion 3.35. Let £ C P(X), and suppose u,v are two measures which agree on €. Must they agree on o(E)?
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4. Abstract measures
4.1. Dynkin systems.
Question 4.1. Say p,v are two measures such that p=v on 11 C X. Must p=v on o(II)?

> Clearly need II to be closed under intersections.



