time of the state of ally sale and (matane) hast . Want a t de L F X is a mongone. (ctaling add) (restricted to L)

Theorem 3.22 (Carathéodory extension). Let $\Sigma \stackrel{\text{def}}{=} \{E \subseteq X \mid \mu^*(A \cap E) + \mu^*(A \cap E^c) \forall A \subseteq X\}$. Then Σ is a σ -algebra, and μ^* is a measure on (X, Σ) .

Remark 3.23. Clearly $\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c)$ for all E, A.

Intuition: Suppose $\mu^* = \lambda^*$. In order to show $\mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E^c)$, cover A by cells so that $\mu^*(A) \ge \sum \ell(I_k) - \varepsilon$. Split this cover into cells that intersect E and cells that intersect E^c . If E is nice, hopefully the overlap is small.



Proof of Theorem 3.22 $(1) \ \emptyset \in \Sigma.$ $(2) \ E \in \Sigma \implies E^c \in \Sigma.$ $(3) \ E, F \in \Sigma \implies E \cup F \in \Sigma. (Hence \ E_1, \dots, E_n \in \Sigma \implies \cup_1^n E_i \in \Sigma.)$

(4) If
$$E_1, \ldots, E_n \in \Sigma$$
 are pairwise disjoint, $A \subseteq X$, then $\mu^*(A \cap (\bigcup_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cap E_i)$.

$$P_{i}^{\circ} M = 2.$$

$$P_{i}^{\circ} E_{i} E_{j} E_{j}^{\circ}$$

$$P_{i}^{\circ} (A \cap (E_{i} \cup E_{j})) \stackrel{\checkmark}{=} P_{i}^{\ast} (A \cap (E_{i} \cup E_{j}) \cap E_{i}) + P_{i}^{\ast} (A \cap (E_{i} \cup E_{j}) \cap E_{j}^{\circ})$$

$$E_{i} E_{j} \stackrel{\checkmark}{=} P_{i}^{\ast} (A \cap E_{i}) + P_{i}^{\ast} (A \cap E_{j})$$

$$Q E D.$$

(5) Σ is closed under countable <u>disjoint</u> unions, and μ^* is countably additive on Σ . *Proof:* Let $E_1, E_2, \ldots, \in \Sigma$ be pairwise disjoint, and $A \subseteq X$ be arbitrary. NTC $\bigcup_{i}^{N} E_{i} \in \mathbb{Z} \times \mu^{*}(\bigcup_{i}^{N} E_{i}) = \mathbb{Z} \times \mu^{*}(E_{i})$ (:: V E E Z) $\mathcal{W}^{*}(A) = \mathcal{W}^{*}(A \cap \mathcal{V}_{i}E_{i}) + \mathcal{W}^{*}(A \cap (\mathcal{V}_{i}E_{i}))$ $= \sum_{i=1}^{N} \mu^{*}(A \cap E_{i}) + \mu^{*}(A \cap [O \in F_{i}))$ $+ \mu^{*}(A \cap (\hat{\mu} \in \hat{\Sigma}))$ 1(ΗN

 $S \Rightarrow \mu^{*}(A) \geq Z \mu(A \land E_{g}) + \mu^{*}(A \land (U \in I_{g}))$ $(Ctale inhered) M^{*}(A \cap (B \in I)) + M^{*}(A \cap (B \in I)) \geq M^{*}(A)$ $\Rightarrow \mu^{*}(A) = \mu^{*}(A \cap (\mathcal{V} \in \mathcal{F})) + \mu^{*}(A \cap (\mathcal{V} \in \mathcal{F}))$ ⇒ VE; EZ. (=> ctale add QRD.

Remark 3.24. Note, the above shows $\mu^*(A \cap (\cup_1^\infty E_i)) = \sum_1^\infty \mu^*(A \cap E_i).$

Definition 3.25. Define the Lebesgue σ -algebra by $\mathcal{L}(\mathbb{R}^d) = \{E \mid \lambda^*(A) = \lambda^*(A \cap E) \bigotimes \lambda^*(A \cap E^c) \ \forall A \subseteq \mathbb{R}^d\}.$ **Definition 3.26.** Define the Lebesgue measure by $\lambda(E) = \lambda^*(E)$ for all $E \in \mathcal{L}(\mathbb{R}^d)$. Remark 3.27. By Carathéodory, $\mathcal{L}(\mathbb{R}^d)$ is a σ -algebra, and λ is a measure on \mathcal{L} . **Proposition 3.29.** If $I \subseteq \mathbb{R}^d$ is a cell, then $I \in \mathcal{L}(\mathbb{R}^d)$.

Proof:

NTS $\lambda^{*}(A) \geq \lambda^{*}(A \cap I) + \lambda^{*}(A \cap I^{c})$ Phi Pide & >0 3870 & a coll $\pi_{g} \in I + \lambda(I - \pi_{g}) < \epsilon$ $\& d(J_{\varsigma}, I^{\varsigma}) > 0$

Note $\lambda^{*}(A) \geq \lambda^{*}(A \cap J_{\varepsilon}) \cup (A \cap I^{c}))$

 $\frac{cop}{\lambda} add \lambda^{*}(A \cap \overline{J}_{S}) + \lambda^{*}(A \cap \overline{J}_{S}^{C})$ ANI \in (AN \sqrt{k}) \cup (I - \sqrt{k}) Noe $\rightarrow \lambda^{*}(A \cap I) \leq \lambda^{*}(A \cap J_{s}) + \varepsilon$ $\Rightarrow \lambda^{*}(A1\overline{J}) \geq \lambda^{*}(A0\overline{I}) - \underline{2}$ $\Rightarrow \chi'(A) \geq \chi'(A \cap I) - \epsilon + \chi'(A \cap I^{C})$

QED.

 \cap **Proposition 3.30.** $\mathcal{L}(\mathbb{R}^d) \supseteq \mathcal{B}(\mathbb{R}^d)$.

Remark 3.31. We will show later that $\mathcal{L}(\mathbb{R}^d) = \mathcal{B}(\mathbb{R}^d) + \mathcal{N}$, where $\mathcal{N} = \{A \subseteq \mathbb{R}^d \mid \lambda^*(A) = 0\}$.

 $P_{f}: \mathcal{L}(\mathbb{R}^{d}) \supseteq \text{ cells}$ $\ni \mathcal{L}(\mathbb{R}^{d}) \supseteq \tau(\text{ cells}) \supseteq \mathcal{B}(\mathbb{R}^{d})$ (aug alen st is a dale inter al eells)

Here are two results that will be proved later:

Theorem 3.32. $\mathcal{L}(\mathbb{R}^d) \supseteq \mathcal{B}(\mathbb{R}^d)$. (In fact the cardinality of $\mathcal{L}(\mathbb{R}^d)$ is larger than that of $\mathcal{B}(\mathbb{R}^d)$.) **Theorem 3.33.** $\mathcal{L}(\mathbb{R}^d) \subsetneq \mathcal{P}(\mathbb{R}^d)$. **Theorem 3.34** (Uniqueness). If μ is any measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that $\mu(I) = \lambda(I)$ for all cells, then $\mu(E) = \lambda(E)$ for all $\mathcal{L}(E)$ for all $\mathcal{L}(E)$

Question 3.35. Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and suppose μ, ν are two measures which agree on \mathcal{E} . Must they agree on $\sigma(E)$?

Pro Clanne 1:
$$\forall E \in BR$$
) $p(E) \leq \lambda(E)$.
Song $E \subseteq \bigcup_{k=1}^{n} \int_{k}^{cells} p(E) \leq \sum_{k=1}^{n} p(I_{k}) = \sum_{k=1}^{n} \lambda(I_{k}) = \sum_{k=$

Claim 2: If $E \subseteq \mathbb{R}^d$ is boundar, then $p(E) \ni \lambda(E)$. Pl: Ebd > Frell I + I 2 E $\mu(I-E) \leq \lambda(I-E) = \lambda(A) - \lambda(E)$ $> \lambda(E) \leq \mu(E)$ QED. $M(Z) - \mu(E)$ Clam 122 -> YE Lold $\mu(E) = \lambda(E).$ VE ona,

 $E = \bigcup_{n \in \mathcal{B}} E \cap \mathcal{B}(0, n)$ $\Rightarrow \mu(E) = \lim_{N \to \infty} \mu(E \cap B(0, N))$ $= \lim_{\lambda \to \infty} \lambda(E \cap F(O, n)) = \lambda(E)$ QED.

4. Abstract measures

4.1. Dynkin systems.

Question 4.1. Say μ, ν are two measures such that $\mu = \nu$ on $\Pi \subseteq \Sigma$. Must $\mu = \nu$ on $\sigma(\Pi)$?

 $\triangleright\,$ Clearly need Π to be closed under intersections.