
Wat a σ alg \mathcal{L}
$\left.\lambda^{*}\right|_{L}$ is a measme. $\leqslant($ ctaby add $)$
(rectivictal to α)

Theorem 3.22 (Carathéodory extension). Let $\Sigma \stackrel{\text { def }}{=}\left\{E \subseteq X \mid \mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right) \forall A \subseteq X\right\}$. Then Σ is a σ-algebra, and μ^{*} is a measure on (X, Σ).

Remark 3.23. Clearly $\mu^{*}(A) \leqslant \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$ for all E, A.
Intuition: Suppose $\mu^{*}=\lambda^{*}$. In order to show) $\mu^{*}(A) \geqslant \mu^{*}(A \cap E)+\mu^{*}\left(A \cap E^{c}\right)$, cover A by cells so that $\mu^{*}(A) \geqslant \sum \ell\left(I_{k}\right)-\varepsilon$. Split this cover into cells that intersect E and cells that intersect E^{c}. If E is nice, hopefully the overlap is small.

Proof of Theorem 3.22
$\rightarrow(1) \emptyset \in \Sigma$.
-2) $E \in \Sigma \Longrightarrow E^{c} \in \Sigma$.
(3) $E, F \in \Sigma \Longrightarrow E \cup F \in \Sigma$. (Hence $E_{1}, \ldots, E_{n} \in \Sigma \Longrightarrow \cup_{1}^{n} E_{i} \in \Sigma$.)
(4) If $E_{1}, \ldots, E_{n} \in \Sigma$ are pairwise disjoint, $A \subseteq X$, then $\mu^{*}\left(A \cap\left(\cup_{1}^{n} E_{i}\right)\right)=\sum_{1}^{n} \mu^{*}\left(A \cap E_{i}\right)$.

$$
\begin{aligned}
& \text { Pf: } u=2 \\
& \because E_{1} \in Z \\
& \mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right) \stackrel{\downarrow}{=} \mu^{*}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{1}\right)+\mu^{x}\left(A \cap\left(E_{1} \cup E_{2}\right) \cap E_{1}^{c}\right) \\
& F, 5,5 \text { dep } \\
& \stackrel{\mu^{*}\left(A \cap E_{1}\right)+\mu^{*}\left(A \cap E_{2}\right)}{ } \\
& Q E D
\end{aligned}
$$

(5) Σ is closed under countable disjoint unions, and μ^{*} is countably additive on Σ.
Proof: Let $E_{1}, E_{2}, \ldots, \in \Sigma$ be pairwise disjoint, and $A \subseteq X$ be arbitrary.

$$
\begin{aligned}
& \text { aTC } \sum_{1}^{D} E_{i} \in \Sigma \& \mu^{*}\left(\begin{array}{l}
\left.V_{1}^{n} E_{i}\right)=\sum_{1}^{*} \mu^{*}\left(E_{i}\right) \quad\left(\because V_{1} E_{i} \in \Sigma\right)
\end{array}\right. \\
& \text { Pf: } x^{*}(A)=\mu^{*}\left(A \cap \sum_{1}^{N} E_{i}\right)+\mu^{*}\left(A \cap\left(\tilde{\nu}_{1}^{N} E_{i}\right)^{L}\right) \\
& =\sum_{i}^{N} \mu^{*}\left(A \cap E_{i}\right)+\mu^{*}\left(A \cap\left(\bigcup_{1}^{N} E_{i}\right)^{C}\right) \\
& \geqslant \sum_{i}^{N} \| \quad+\mu^{*}\left(A \wedge\left(\bigotimes_{1}^{\infty} E_{i}^{c}\right) \quad \forall N\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mu^{*}(A)=\mu^{*}\left(A \cap\left(\begin{array}{l}
Q_{1} \\
1 \\
1
\end{array}\right)\right)+\mu^{*}\left(A \cap\binom{\infty}{V_{1} E_{j}}^{c}\right) \\
& \Rightarrow \bigcup_{1} E_{i} \in \Sigma \text {. }
\end{aligned}
$$

\Rightarrow ctale alld KRD.

Remark 3.24. Note, the above shows $\mu^{*}\left(A \cap\left(\cup_{1}^{\infty} E_{i}\right)\right)=\sum_{1}^{\infty} \mu^{*}\left(A \cap E_{i}\right)$.

Definition 3.25. Define the Lebesgue σ-algebra by $\mathcal{L}\left(\mathbb{R}^{d}\right)=\left\{\underline{E} \mid \lambda^{*}(\underline{A})=\lambda^{*}(A \cap E) \lambda^{*}\left(A \cap E^{c}\right) \forall A \subseteq \mathbb{R}^{d}\right\}$.
Definition 3.26. Define the Lebesgue measure by $\overline{\lambda(E)}=\lambda^{*}(E)$ for all $E \in \mathcal{L}\left(\mathbb{R}^{d}\right)$.
Remark 3.27. By Carathéodory, $\mathcal{L}\left(\mathbb{R}^{d}\right)$ is a σ-algebra, and λ is a measure on \mathcal{L}.
Question 3.28. Is $\mathcal{L}\left(\mathbb{R}^{d}\right)$ nontrivial?
Yes

Proposition 3.29. If $I \subseteq \mathbb{R}^{d}$ is a cell, then $I \in \mathcal{L}\left(\mathbb{R}^{d}\right)$.
Proof:

NTS $x^{*}(A) \geqslant \lambda^{*}(A \cap I)+\lambda^{*}\left(A \cap I^{C}\right)$
Pfi Pid $\varepsilon>0$.

$$
\begin{gathered}
\exists \delta>0 \text { \& a coll } J_{\delta} \subseteq I+\lambda^{*}\left(I-J_{8}\right)<\varepsilon \\
\quad \& d\left(J_{8}, I^{c}\right)>0
\end{gathered}
$$

Nole $\left.\lambda^{*}(A) \geqslant \lambda^{*}\left(A \cap J_{8}\right) \quad \cup\left(A \cap I^{c}\right)\right)$

$$
\begin{gathered}
\text { Cop addl} \lambda^{*}\left(A \cap J_{\varepsilon}\right)+\lambda^{*}\left(A \cap I^{c}\right) \\
\text { Wde } A \cap I \subseteq\left(A \cap \sigma_{8}\right) \cup\left(I-J_{8}\right) \\
\Rightarrow \lambda^{*}(A \cap I) \leqslant \lambda^{*}\left(A \cap J_{\varepsilon}\right)+\varepsilon \\
\Rightarrow \lambda^{*}\left(A \cap J_{\delta}\right) \geqslant \lambda^{*}(A \cap I)-\varepsilon \\
\Rightarrow \lambda^{*}(A) \geqq \lambda^{*}(A \cap I)-\varepsilon+\lambda^{*}\left(A \cap I^{C}\right) \quad \theta E D .
\end{gathered}
$$

Proposition 3.30. $\mathcal{L}\left(\mathbb{R}^{d}\right) \supseteq \mathcal{B}\left(\mathbb{R}^{d}\right)$.
Remark 3.31. We will show later that $\mathcal{L}\left(\mathbb{R}^{d}\right)=\underline{\mathcal{B}\left(\mathbb{R}^{d}\right)}+\underline{\mathcal{N}}$, where $\underline{\underline{\mathcal{N}}}=\left\{A \subseteq \mathbb{R}^{d} \mid \underline{\lambda^{*}(A)=0}\right\}$.

$$
\begin{aligned}
& \mathscr{L}\left(\mathbb{R}^{\prime}\right) 2 \text { cells } \\
& \Rightarrow L\left(\mathbb{R}^{l}\right) \geq r(\text { oll }) \geq B\left(\mathbb{R}^{d}\right) \\
& \text { (ayz aleu at iso date winen of eallo) }
\end{aligned}
$$

Here are two results that will be proved later:
Theorem 3.32. $\mathcal{L (\mathbb { R } ^ { d }) \supsetneq \mathcal { B } (\mathbb { R } ^ { d }) .}$ ((n fact the cardinality of $\mathcal{L}\left(\mathbb{R}^{d}\right)$ is larger than that of $\mathcal{B}\left(\mathbb{R}^{d}\right)$.)
Theorem 3.33. $\widehat{\mathcal{L}\left(\mathbb{R}^{d}\right) \subsetneq \mathcal{P}\left(\mathbb{R}^{d}\right) \text {. }}$

Theorem 3.34 (Uniqueness). If μ is any measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ such that $\mu(I)=\lambda(I)$ for all cells, then $\mu(E)=\lambda(E)$ for all
$E \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.
Question 3.35. Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and suppose μ, ν are two measures which agree on \mathcal{E}. Must they agree on $\sigma(E)$?

$$
\begin{aligned}
& \text { Pf: Clam 1: } \left.\forall E \in E R^{\lambda}\right) \mu(E) \leq \lambda(E) \\
& \operatorname{Sog} E \subseteq \bigcup_{1}^{\infty} I_{k} \Rightarrow \mu(E) \leq \sum_{1}^{\infty} \mu\left(I_{k}\right)=\sum_{1}^{\infty} \lambda\left(I_{k}\right)=\sum_{1}^{\infty} l\left(I_{k}\right) \\
& \Rightarrow \mu(E) \leq \inf \left\{\sum l\left(I_{k}\right) \mid E C \bigcup_{1}^{\infty} I_{k}, I_{k} \text { cell }\right\}=\lambda^{x}(E) \\
& =\lambda(E) \\
& \Rightarrow C \text { fir } 1 .
\end{aligned}
$$

Claim 2: If $E \subseteq \mathbb{R}^{d}$ is Goindt, then $n(E) \geqq \lambda(E)$

$$
\begin{aligned}
& \text { Pf: E bat } \Rightarrow \exists_{n} \text { gl } I+I \geq E \\
& \mu(I-E) \stackrel{\text { chain }}{\leqslant} \lambda(I-E)=\lambda(T)-\lambda(E) \\
& \mu(\lambda)-\mu(E) \quad \Rightarrow \lambda(E) \leqslant \mu(E) Q \in D .
\end{aligned}
$$

Chan $1 k 2 \rightarrow \forall E$ ht $\quad p(E)=\lambda(E)$.
HE and,

$$
\begin{aligned}
& E= \bigcup_{1}^{\infty} E \cap B(0, n) \\
& \Rightarrow \mu(E)=\lim _{u \rightarrow \infty} \mu(E \cap B(0, n)) \\
&=\lim _{u \rightarrow \infty} \lambda(E \cap B(0, x))=\lambda(E) \\
& Q E D .
\end{aligned}
$$

4. Abstract measures

4.1. Dynkin systems.

Question 4.1. Say μ, ν are two measures such that $\mu=\nu$ on $\Pi \subseteq \Sigma$. Must $\mu=\nu$ on $\sigma(\Pi)$? \triangleright Clearly need Π to be closed under intersections.

