Assignment 13 (assigned 2022-12-07, due never).

1. (Uncertainty principle) Suppose $f \in \mathcal{S}(\mathbb{R})$. Show that

$$
\left(\int_{\mathbb{R}}|x f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi \hat{f}(\xi)|^{2} d \xi\right) \geqslant \frac{1}{16 \pi^{2}}\|f\|_{L^{2}}^{2}\|\hat{f}\|_{L^{2}}^{2}
$$

[This illustrates a nice localisation principle about the Fourier transform. The first integral measures the spread of the function f. The second the spread of the Fourier transform \hat{f}. Here you show that this product is bounded below! The proof, once you know enough Physics, reduces to the above inequality.

Hint: Consider $\left.\int_{\mathbb{R}} x f(x) f^{\prime}(x) d x.\right]$
2. (Trace theorems) Let $p \in \mathbb{R}^{m}$ be fixed. Given $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ define $S_{p} f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $S_{p} f(y)=f(p, y)$.
(a) Let $s>m / 2$, and $s^{\prime}=s-m / 2$. Show that there exists a constant c such that $\left\|S_{p} f\right\|_{H^{s^{\prime}}\left(\mathbb{R}^{n}\right)} \leqslant c\|f\|_{H^{s}\left(\mathbb{R}^{m+n}\right)}$.
(b) Show that the section operator S_{p} extends to a continuous linear operator from $H^{s}\left(\mathbb{R}^{m+n}\right)$ to $H^{s^{\prime}}\left(\mathbb{R}^{n}\right)$.
[Given an arbitrary L^{2} function on \mathbb{R}^{m+n} it is of course impossible to restrict it to an m-dimensional hyper-plane. However, if your function has more than $n / 2$ "Sobolev derivatives", then you can make sense of this restriction, and the restriction still has $s-n / 2$ "Sobolev derivatives".]
3. Find $E \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ and $x \in \mathbb{R}^{d}$ such that $\lim _{r \rightarrow 0} \frac{\lambda(E \cap B(x, r))}{\lambda(B(x, r))}$ does not exist.
4. Let μ be a finite Borel measure on \mathbb{R}^{d} such that $\mu(\{x\}=0)$ for all $x \in \mathbb{R}^{d}$. True or false: For any $\alpha \in\left[0, \mu\left(\mathbb{R}^{d}\right)\right]$ there exists $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ such that $\mu(A)=\alpha$. Prove it, or find a counter example.
5. Show that the arbitrary union of closed (non-degenerate) cubes (with sides parallel to the coordinate axis) is Lebesgue measurable. [Hint: Look up and use the Vitali covering theorem (which is stronger than the covering lemma I used). More generally one can show that the arbitrary union of convex sets with nonempty interiors is Lebesgue measurable (see Balcerzak and Kharazishvili '99).]
6. Let $p \in[1,2], f \in L^{p}\left(\mathbb{R}^{d}\right)$. Given $R>0$ define $\hat{f}_{R}=\left(\mathbf{1}_{B(0, R)} f\right)^{\wedge}$. Is there a sequence $\left(R_{n}\right) \rightarrow \infty$ such that $\hat{f}_{R_{n}}$ converges almost everywhere? Prove it, or find a counter example.
7. Let $B=B(0,1) \subseteq \mathbb{R}^{d}$. Show that $|B|=\pi^{d / 2} / \Gamma(1+n / 2)$, where $\Gamma(s)=$ $\int_{0}^{\infty} x^{s-1} e^{-x} d x$. [Hint: Compute $\int_{\mathbb{R}^{d}} e^{-|x|^{2} / 2} d x$.]

