21-720 Measure Theory.

2022-12-12

- This is a closed book test. You may not use phones, calculators, or other electronic devices.
- You may not give or receive assistance.
- You have 3 hours. The exam has a total of 8 questions and 80 points.
- You may use any result from class or homework **PROVIDED** it is independent of the problem you want to use the result in. (You must also **CLEARLY** state the result you are using.)

In this exam $\mathcal{L}(\mathbb{R}^d)$ denotes the Lebesgue σ -algebra on \mathbb{R}^d , $\mathcal{B}(X)$ denotes the Borel σ -algebra on a metric space X, and λ denotes the Lebesgue measure on \mathbb{R}^d .

- 1. Let f be a Lebesgue measurable function such that $\int_{\mathbb{R}^d} (1+|x|) |f(x)| dx < \infty$. Let \hat{f} denote the Fourier transform of f. Must $\hat{f} \in C^1$? If yes, prove it. If no, find a counter example.
- 10 2. Show that any finite Borel measure on a compact metric space is regular.
- 10 3. Let μ be a positive measure on (X, Σ) , and $f_n, f \in L^1(X)$ be such that $f_n \to f$ almost everywhere, and $\int_X |f_n| d\mu \to \int_X |f| d\mu$. True or false:

The family $\{f_n \mid n \in \mathbb{N}\}$ is uniformly integrable.

If true, prove it. If false, find a counter example.

5

- 5 4. (a) Let $p, q \in [1, \infty]$ be such that 1/p + 1/q = 1. Let $f \in L^p(\mathbb{R}^d)$, and $g \in L^q(\mathbb{R}^d)$. Show that f * g continuous.
 - (b) Let $A \in \mathcal{L}(\mathbb{R}^d)$ have finite measure. Define $f(x) = \lambda(A \cap (A + x))$. Is f continuous? Prove it, or find a counter example.
- 10 5. Let μ_n be a sequence of finite (signed) measures on (X, Σ) which is Cauchy under the total variation norm (i.e. for every $\varepsilon > 0$ there exists N such that for every $m, n \ge N$ we have $\|\mu_m \mu_n\|_{\text{TV}} < \varepsilon$). Show that there exists a finite (signed) measure μ such that $\|\mu_n \mu\|_{\text{TV}} \to 0$ as $n \to \infty$.
- 10 6. Prove the following special case of the Radon–Nikodym theorem: Suppose μ, ν are two finite positive measures on (X, Σ) and ν is absolutely continuous with respect to μ . Show that there exists $f \in L^1(X, \mu)$ such that for every $A \in \Sigma$ we have $\nu(A) = \int_A f d\mu$.
- 10 7. Let $f \in L^1(\mathbb{R}^d)$, and Mf denote the maximal function. Show that there exists a constant C (that does not depend on f) such that for every $\alpha > 0$, $\lambda \{Mf > \alpha\} \leq C \|f\|_{L^1}/\alpha$.
- 10 8. Let $K \in C_c^{\infty}(\mathbb{R}^d)$ be such that $\int_{\mathbb{R}^d} K(x) \, dx = 0$. For any $\varepsilon > 0$ define $K_{\varepsilon}(x) = \frac{1}{\varepsilon^d} K(x/\varepsilon)$. Let $p, q \in (1, \infty)$, $\alpha \in (0, 1)$ and $f \in L^p(\mathbb{R}^d)$. (Note, p and q are not necessarily related.) Define $\|f\|_{B_{p,q}^{\alpha}}$ by

$$\|f\|_{B_{p,q}^{\alpha}} \stackrel{\text{def}}{=} \left(\int_{\mathbb{R}^d} \left(\frac{\|\tau_h f - f\|_{L^p}}{|h|^{\alpha}} \right)^q \frac{dh}{|h|^d} \right)^{1/q}$$

Find a constant C such that for all $f \in L^p(\mathbb{R}^d)$ with $||f||_{B^{\alpha}_{p,q}} < \infty$ we have $||f * K_{\varepsilon}||_{L^p} \leq C\varepsilon^{\alpha} ||f||_{B^{\alpha}_{p,q}}$. Express C explicitly in terms of K (e.g. write $C = \int_{\mathbb{R}^d} (1+|h|^2) |K(h)|^3 dh$, or something similar).