21-720 Measure Theory.

2022-12-12

- This is a closed book test. You may not use phones, calculators, or other electronic devices.
- You may not give or receive assistance.
- You have 3 hours. The exam has a total of 8 questions and 80 points.
- You may use any result from class or homework PROVIDED it is independent of the problem you want to use the result in. (You must also CLEARLY state the result you are using.)

In this exam $\mathcal{L}\left(\mathbb{R}^{d}\right)$ denotes the Lebesgue σ-algebra on $\mathbb{R}^{d}, \mathcal{B}(X)$ denotes the Borel σ-algebra on a metric space X, and λ denotes the Lebesgue measure on \mathbb{R}^{d}.

10 1. Let f be a Lebesgue measurable function such that $\int_{\mathbb{R}^{d}}(1+|x|)|f(x)| d x<\infty$. Let \hat{f} denote the Fourier transform of f. Must $\hat{f} \in C^{1}$? If yes, prove it. If no, find a counter example.

10 2. Show that any finite Borel measure on a compact metric space is regular.
10 3. Let μ be a positive measure on (X, Σ), and $f_{n}, f \in L^{1}(X)$ be such that $f_{n} \rightarrow f$ almost everywhere, and $\int_{X}\left|f_{n}\right| d \mu \rightarrow \int_{X}|f| d \mu$. True or false:

The family $\left\{f_{n} \mid n \in \mathbb{N}\right\}$ is uniformly integrable.
If true, prove it. If false, find a counter example.
5. Let μ_{n} be a sequence of finite (signed) measures on (X, Σ) which is Cauchy under the total variation norm (i.e.
for every $\varepsilon>0$ there exists N such that for every $m, n \geqslant N$ we have $\left\|\mu_{m}-\mu_{n}\right\|_{\mathrm{TV}}<\varepsilon$). Show that there exists

Let μ_{n} be a sequence of finite (signed) measures on (X, Σ) which is Cauchy under the total variation norm (i.e.
for every $\varepsilon>0$ there exists N such that for every $m, n \geqslant N$ we have $\left\|\mu_{m}-\mu_{n}\right\|_{\mathrm{TV}}<\varepsilon$). Show that there exists a finite (signed) measure μ such that $\left\|\mu_{n}-\mu\right\|_{\text {TV }} \rightarrow 0$ as $n \rightarrow \infty$.
6. Prove the following special case of the Radon-Nikodym theorem: Suppose μ, ν are two finite positive measures on (X, Σ) and ν is absolutely continuous with respect to μ. Show that there exists $f \in L^{1}(X, \mu)$ such that for every $A \in \Sigma$ we have $\nu(A)=\int_{A} f d \mu$.
7. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$, and $M f$ denote the maximal function. Show that there exists a constant C (that does not depend on f) such that for every $\alpha>0, \lambda\{M f>\alpha\} \leqslant C\|f\|_{L^{1}} / \alpha$.
4. (a) Let $p, q \in[1, \infty]$ be such that $1 / p+1 / q=1$. Let $f \in L^{p}\left(\mathbb{R}^{d}\right)$, and $g \in L^{q}\left(\mathbb{R}^{d}\right)$. Show that $f * g$ continuous.
(b) Let $A \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ have finite measure. Define $f(x)=\lambda(A \cap(A+x))$. Is f continuous? Prove it, or find a counter example.
8. Let $K \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ be such that $\int_{\mathbb{R}^{d}} K(x) d x=0$. For any $\varepsilon>0$ define $K_{\varepsilon}(x)=\frac{1}{\varepsilon^{d}} K(x / \varepsilon)$. Let $p, q \in(1, \infty)$, $\alpha \in(0,1)$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$. (Note, p and q are not necessarily related.) Define $\|f\|_{B_{p, q}^{\alpha}}$ by

$$
\|f\|_{B_{p, q}^{\alpha}} \stackrel{\text { def }}{=}\left(\int_{\mathbb{R}^{d}}\left(\frac{\left\|\tau_{h} f-f\right\|_{L^{p}}}{|h|^{\alpha}}\right)^{q} \frac{d h}{|h|^{d}}\right)^{1 / q}
$$

Find a constant C such that for all $f \in L^{p}\left(\mathbb{R}^{d}\right)$ with $\|f\|_{B_{p, q}^{\alpha}}<\infty$ we have $\left\|f * K_{\varepsilon}\right\|_{L^{p}} \leqslant C \varepsilon^{\alpha}\|f\|_{B_{p, q}^{\alpha}}$. Express C explicitly in terms of K (e.g. write $C=\int_{\mathbb{R}^{d}}\left(1+|h|^{2}\right)|K(h)|^{3} d h$, or something similar).

