
Proposition 5.8. [W, W ]T = T almost surely.

Remark 5.9. For use in the proof: Var(N (0, σ2)2) = EN (0, σ2)4 − (EN (0, σ2)2)2 = 2σ4.

Proof:.



Proposition 5.10. W 2
t − [W, W ]t is a martingale.



Theorem 5.11. Let M be a continuous martingale.
(1) EM2

t < ∞ if and only if E[M, M ]t < ∞.
(2) In this case M2

t − [M, M ]t is a continuous martingale.
(3) Conversely, if M2

t − At is a martingale for any continuous, increasing process A such that A0 = 0, then we must have
At = [M, M ]t.









Remark 5.12. If X has finite first variation, then |Xt+δt − Xt| ≈ O(δt).

Remark 5.13. If X has finite quadratic variation, then |Xt+δt − Xt| ≈ O(
√

δt) ≫ O(δt).



5.4. Itô Integrals.
• Dt = D(t) some adapted process (position on an asset).
• P = {0 = t0 < t1 < · · ·} increasing sequence of times.
• ∥P∥ = maxi ti+1 − ti, and ∆iX = Xti+1 − Xti .
• W : standard Brownian motion.

• IP (T ) def=
n−1X

i=0
Dti

∆iW + Dtn
(WT − Wtn

)

Definition 5.14. The Itô Integral of D with respect to Brownian motion is defined by

IT =
Z T

0
Dt dWt = lim

∥P ∥→0
IP (T ) .

Remark 5.15. Suppose for simplicity T = tn.
(1) Riemann integrals: lim

∥P ∥→0

X
Dξi

∆iW exists, for any ξi ∈ [ti, ti+1].

(2) Itô integrals: Need ξi = ti for the limit to exist.







Theorem 5.16. If E

Z T

0
D2

t dt < ∞ a.s., then:

(1) IT = lim
∥P ∥→0

IP (T ) exists a.s., and EI(T )2 < ∞.

(2) The process IT is a martingale: EsIt = Es

Z t

0
Dr dWr =

Z s

0
Dr dWr = Is

(3) [I, I]T =
Z T

0
D2

t dt a.s.

Remark 5.17. If we only had
Z T

0
D2

t dt < ∞ a.s., then I(T ) = lim
∥P ∥→0

IP (T ) still exists, and is finite a.s. But it may not be a

martingale (it’s a local martingale).


