Continuous Time Finance: Final.

2023-05-04

- This is a closed book test. You may not use phones, calculators, or other electronic devices.
- You may not give or receive assistance.
- You have 3 hours. The exam has a total of 8 questions and 80 points.
- The questions are roughly ordered by difficulty. Good luck.

In this exam W always denotes a standard Brownian motion, and the filtration $\left\{\mathcal{F}_{t} \mid t \geqslant 0\right\}$ is the Brownian filtration. Here are a few formulae that you can use:

- Solution formula to the Black Scholes PDE:

$$
f(t, x)=\int_{-\infty}^{\infty} e^{-r \tau} g\left(x \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} y\right)\right) \frac{e^{-y^{2} / 2} d y}{\sqrt{2 \pi}}, \quad \tau=T-t
$$

- Black Scholes Formula for European calls, and the Greeks

$$
\begin{gathered}
c(t, x)=x N\left(d_{+}\right)-K e^{-r \tau} N\left(d_{-}\right) \quad d_{ \pm} \stackrel{\text { def }}{=} \frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y \\
\partial_{x} c=N\left(d_{+}\right), \quad \partial_{x}^{2} c=\frac{1}{x \sigma \sqrt{2 \pi \tau}} \exp \left(\frac{-d_{+}^{2}}{2}\right), \quad \partial_{t} c=-r K e^{-r \tau} N\left(d_{-}\right)-\frac{\sigma x}{\sqrt{8 \pi \tau}} \exp \left(\frac{-d_{+}^{2}}{2}\right) .
\end{gathered}
$$

10 1. Express $t W_{t}^{3}$ as the sum of a martingale and a process of finite first variation.
10 2. Let W and B be two independent, standard, one dimensional, Brownian motions. Let $X_{t}=W_{t}^{2} B_{t}$. Find the quadratic variation of X, and express your answer in the form $\int_{0}^{t} f\left(s, W_{s}, B_{s}\right) d s$ for some function f that you find an explicit formula for.
10 3. Let $\lambda \in \mathbb{R}$, and $0<s<t$. Compute $\boldsymbol{E}_{s} e^{i \lambda W_{t}}$, where $i=\sqrt{-1}$. Your final answer should not involve any expectations or integrals.

10 4. Consider a market with one stock and a bank. The bank has interest rate $r \geqslant 0$ and the stock price (denoted by S_{t}) is governed by the equation

$$
d S_{t}=\alpha S_{t} d t+\sigma \sqrt{S_{t}} d W_{t}
$$

for some (known) constants $\alpha, \sigma>0$. Suppose $f=f(t, x)$ is some function such that $X_{t}=f\left(t, S_{t}\right)$ is the wealth of a self financing portfolio at time t. Find a PDE satisfied by f (i.e. express $\partial_{t} f$ in terms of $f, \partial_{x} f, \partial_{x}^{2} f$ and the model parameters $\alpha, \sigma, r)$.

10 5. Consider a dividend paying stock whose price is modelled by

$$
d S_{t}=\alpha_{t} S_{t} d t+\sigma_{t} S_{t} d W_{t}-A_{t} S_{t} d t
$$

Here α_{t} is the mean return rate, σ_{t} the volatility, and A_{t} is the rate at which the stock pays dividends. If an investor buys one share of this stock at time 0 , and re-invests all dividends in the stock, then how many shares do they have at time T ? (Your final answer must be an explicit formula, but may use unsimplified integrals involving σ, α and A.)

10 6. Consider a market with 2 stocks and a bank. The bank has interest rate $r \geqslant 0$, and the stock prices (denoted by S_{t}^{1} and S_{t}^{2}, respectively) are modelled by

$$
d S_{t}^{1}=2 S_{t}^{1} d t+2 S_{t}^{1} d W_{t}^{1}+4 S_{t}^{1} d W_{t}^{2}, \quad d S_{t}^{2}=S_{t}^{2} d t+3 S_{t}^{2} d W_{t}^{1}+6 S_{t}^{2} d W_{t}^{2}
$$

(The stocks do not pay dividends.) Does there exist $r \geqslant 0$ such that the market is complete and arbitrage free? Prove your answer. (If your answer is yes, also find all such r.)

10 7. Consider a financial market consisting of a stock and a money market account. Suppose the money market account has a constant return rate r, and the stock price follows a geometric Brownian motion with mean return rate α and volatility σ. Here α, σ and $r>0$ are constants. Let $\beta, K, T>0$ and consider a derivative security that pays $\left(S_{T}^{\beta}-K\right)^{+}$at maturity T. Compute the arbitrage free price of this security at any time $t \in[0, T)$. Your answer may involve r, σ, K, t, T, S, and the CDF of the normal distribution, but not any integrals or expectations.

10 8. Suppose W is a 2 dimensional Brownian motion, $\alpha \in \mathbb{R}^{2}$ and $\sigma=\left(\sigma^{i, j}\right)$ is a 2×2 matrix. (Both α and σ are not random, and independent of time.) For $i \in\{1,2\}$, define S^{i} by

$$
d S^{i}=\alpha^{i} S_{t}^{i} d t+S^{i} \sum_{j=1}^{2} \sigma^{i, j} d W_{t}^{j} .
$$

Let $X_{t}=S_{t}^{1} S_{t}^{2}$. Find $\tilde{\alpha}, \tilde{\sigma} \in \mathbb{R}$ and a one dimensional Brownian motion \tilde{W} so that

$$
d X_{t}=\tilde{\alpha} X_{t} d t+\tilde{\sigma} X_{t} d \tilde{W}_{t} .
$$

