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1. Preface.

These are the slides I used while teaching this course in Fall 2021. I projected them
(spaced out) in class, and filled in the proofs by writing over them. The annotated version of
these slides with handwritten proofs, blank slides (so you take notes), and the compactified

un-annotated version for quick review can be found on the class website. The IATEXsource of
these slides is also available on git.



. Syllabus Overview

Class website and full syllabus: https://www.math.cmu.edu/~gautam/sj/teaching/

2021-22/944-scalc-financel

TA’s: Shukun Long <shukunl@andrew.cmu.edu>.

Homework Due: 10:10AM Oct 28, Nov 4, 11, 23, 30, Dec 7

Midterm: Tue, Nov 16, in class (May be delayed to Nov 18 if we have not covered Itd’s

formula in time.)

Homework:

> Good quality scans please! Use a scanning app, and not simply take photos. (I use
Adobe Scan.)

> 20% penalty if turned in within an hour of the deadline. 100% penalty after that.

> One homework assignments can be turned in 24h late without penalty.

> Bottom homework score is dropped from your grade (personal emergencies, interviews,
other deadlines, etc.).


https://www.math.cmu.edu/~gautam/sj/teaching/2021-22/944-scalc-finance1
https://www.math.cmu.edu/~gautam/sj/teaching/2021-22/944-scalc-finance1
mailto:shukunl@andrew.cmu.edu

> Collaboration is encouraged. Homework is not a test — ensure you learn from doing the
homework.
> You must write solutions independently, and can only turn in solutions you fully
understand.
e Academic Integrity
> Zero tolerance for violations (automatic R).
> Violations include:
— Not writing up solutions independently and/or plagiarizing solutions
— Turning in solutions you do not understand.
— Seeking, receiving or providing assistance during an exam.
> All violations will be reported to the university, and they may impose additional
penalties.
o Grading: 10% homework, 30% midterm, 60% final.

Course Outline.

¢ Review of Fundamentals: Replication, arbitrage free pricing.



e Quick study of the multi-period binomial model.
> Simple example of replication / arbitrage free pricing.
> Understand conditional expectations. (Have an explicit formula.)
> Understand measurablity / adaptedness. (Can be stated easily in terms of coin tosses
that have / have not occurred.)
> Understand risk neutral measures. Explicit formula!
e Develop tools to price securities in continuous time.
> Brownian motion (not as easy as coin tosses)
> Conditional expectation: No explicit formula!
> Ité formula: main tool used for computation. Develop some intuition.
> Measurablity / risk neutral measures: much more abstract. Complete description is
technical. But we need a working knowledge.
> Derive and understand the Black-Scholes formula.



3.

Replication and Arbitrage

3.1. Replication and arbitrage free pricing.

Start with a financial market consisting of traded assets (stocks, bonds, money market,

options, etc.)

We model the price of these assets through random variables (stochastic processes).

No Arbitrage Assumption:

> In order to make money, you have to take risk. (Can’t make something out of nothing.)

> Mathematically: For any trading strategy such that Xy = 0, and X,, > 0, you must
also have X,, = 0 almost surely.

> Equivalently: There doesn’t exist a trading strategy with Xy = 0, X,, > 0 and
P(X, >0)>0.

Now consider a non-traded asset Y (e.g. an option). How do you price it?

Arbitrage free price: If given the opportunity to trade Y at price Vj, the market remains

arbitrage free, then we say V} is the arbitrage free price of Y.



o We will almost always find the arbitrage free price by replication.
> Say the non-traded asset pays Vi at time N (e.g. call options).
> Try and replicate the payoff:
— Start with Xy dollars.
— Use only traded assets and ensure that at maturity Xy = V.
> Then the arbitrage free price is uniquely determined, and must be Xj.

Remark 3.1. The arbitrage free price is unique if and only if there is a replicating strategy!
In this case, the arbitrage free price is exactly the initial capital of the replicating strategy.



3.2. Example: One period Binomial model.

o Consider a market with a stock, and money market account.

o Interest rate for borrowing and lending is r. No transaction costs. Can buy and sell
fractional quantities of the stock.

o Model assumption: Flip a coin that lands heads with probability p; € (0, 1) and tails with
probability g1 = 1 — p1. Model S; = uSy if heads, and S; = d.Sj if tails.
> Sp is stock price at time 0 (known).
> S is stock price after one time period (random).
> u,d are model parameters (pre-supposed). Called the up and down factors. (Will

always assume 0 < d < u.)

Proposition 3.2. There’s no arbitrage in this model if and only if d < 1+ r < u.
Proof.



Proposition 3.3. Say a security pays V1 at time 1 (V1 can depend on whether the coin flip
is heads or tails). The arbitrage free price at time 0 is given by

1 B ~ _ 1+r—d _ u—(1+4+7)
Vo = Vi(H (T)) = h = - - T
0=1 (P1VA(H) 4+ @ VA(T)) T where Py g p—
Vi(H) - W (T
The replicating strategy holds Ay = M shares of stock at time 0.

(u - d) So
Proof.



. Multi-Period Binomial Model.

Same setup as the one period case 0 < d < 1+ r < u, and toss coins that land heads with
probability p; and tails with probability ¢;.

Except now the security matures at time N > 1.

Stock price: S,+1 = uS, if n + 1-th coin toss is heads, and S, 11 = dS,, otherwise.

To replicate it a security, we start with capital Xj.

Buy Ag shares of stock, and put the rest in cash.

Get X7 = ApSt + (1 + ’/‘)(XO — A()S()).

Repeat. Self Financing Condition: X, 11 = ApSpy1 + (1 +7)(X, — A, Sy).
Adaptedness: A, can only depend on outcomes of coin tosses before n!



Proposition 4.1. Consider a security that pays Vi at time N. Then for any n < N:
1 - Vas1(wnt1 = H) = Vo1 (wn1 = T)
Vo=——--—FE, VN, A, = .
(14 r)N-nn "N (u—d)S,

o V, is the arbitrage free price at timen < N.
o A, is the number of shares held in the replicating portfolio at time n (trading strategy)

Question 4.2. Why does this work?
Question 4.3. What is E, ? (It’s different from E, and different from E,,).



4.1. Quick review probability (finite Sample spaces). This is just a quick reminder, to

fix notation. Read one of the references, or look over the prep material / videos for a more

through treatment. The only thing we will cover in any detail is conditional expectation.
Let N € N be large (typically the maturity time of financial securities).

Definition 4.4. The sample space is the set Q = {(w1,...,wn) | each w; represents the
outcome of a coin toss}.

> E.g w; € {H,T}, orw; € {£1}. (Each w; could also represent the outcome of the roll of a
M sided die.)

Definition 4.5. A sample point is a point w = (wy,...,wn) € Q.

> Each sample point represents the outcome of a sequence of all coin tosses from 1 to N.



Definition 4.6. A probability mass function (PMF for short) is a function p: & — [0, 1]

such that ) p(w) = 1.

Ezample 4.7. Typical example: Fix p; € (0,1), ¢1 =1 — p; and set p(w) = pf(w)qlT(w). Here
H(w) is the number of heads in the sequence w = (w1, ...,wn), and T(w) is the number of
tails.

Definition 4.8. An event is a subset of . Define P(A) =3 ., p(w).
> P is called the probability measure associated with the PMF p.
Ezample 4.9. A{w € Q|w; = +1}. Check P(A) = p;.



4.2. Random Variables and Independence.
Definition 4.10. A random variable is a function X : Q — R.

1 CUQ:-l-].,

1 ) is a random variable corresponding to the outcome
- wy = —1,

Ezample 4.11. X(w) = {

of the second coin toss.



Definition 4.12. The expectation of a random variable X is EX =Y X (w)p(w).
Remark 4.13. Note if Range(X) = {z1,...,2,}, then EX =) X(w)p(w) = > 2 P(X =

Definition 4.14. The variance of a random variable is Var(X) = E(X — EX)2.
Remark 4.15. Note Var(X) = EX? — (EX)2.



Definition 4.16. Two events are independent if P(AN B) = P(A)P(B).

Definition 4.17. The events A4, ..., A, are independent if for any sub-collection A;,, ..., A4;
we have

k

P(A;, NA,N---NA;)=P(A;,)P(Ai,) - P(A;,) .

Remark 4.18. When n > 2, it is not enough to only require P(41 NAxsN---NA,) =
P(A)P(Ay) - P(A,)



Definition 4.19. Two random variables are independent if P(X =z, Y =y) = P(X =
2)P(Y =y) for all 2,y € R.

Definition 4.20. The random variables X, ..., X,, are independent if for all x1,...,z, € R
we have

PXy =z, Xa=12,..., Xy =) = P(X1 =21)P(X2 = 22) - P(Xy, = @)

Remark 4.21. Independent random variables are uncorrelated, but not vice versa.



4.3. Filtrations.
Definition 4.22. We define a filtration on € as follows:

> .Fo = {@, Q}
> F; = all events that can be described by only the first coin toss. E.g. A = {w|
Wy = +1} e Fi.

> F, = all events that can be described by only the first n coin tosses. E.g. A = {w |
w; = 1lws =—-1,w, =1} € F,.

Remark 4.23. Note {0,Q} = Fo C F; C--- C Fy = P(Q).
Remark 4.24. If A, B € F,,, then so do A, B, AnNB, AUB, A— B, B— A.



Definition 4.25. Let n € {0,...,N}. We say a random variable X is F,,-measurable if
X (w) only depends on wy, ..., wy.
> Equivalently, for any B C R, the event {X € B} € F,.

Remark 4.26 (Use in Finance). For every n, the trading strategy at time n (denoted by A,,)
must be F,, measurable. We can not trade today based on tomorrows price.

FEzxample 4.27. If we represent () as a tree, F,, measurablity can be visualized by checking
constancy on leaves.



4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n < N. We define E(X | F,,) = E, X to
be the random wvariable given by

E.Xw)= >  2PX=ux|l,()
z;ERange(X)
where I, (w) ={w' € Q|| =wi, ..., W), =wy,}

Remark 4.29. The above formula does not generalize well to infinite probability spaces. We
will develop certain properties of E,,, and then only use those properties going forward.

Ezample 4.30. If we represent 2 as a tree, E, X can be computed by averaging over leaves.

Remark 4.31. E, X is the “best approximation” of X given only the first n coin tosses.



Proposition 4.32. The conditional expectation E,X defined by the above formula satisfies
the following two properties:
(1) E,X is an F,-measurable random Variable

(2) For every A € F,, ZE X(w ZX
w€eA w€EA

Remark 4.33. This property is used to define conditional expectations in the continuous time
setting. It turns out that there is exactly one random variable that satisfies both the above
properties; and thus we define E,, X to be the unique random variable which satisfies both
the above properties.

Remark 4.34. Note, choosing A = Q, we see E(E,X) = EX.



Proposition 4.35. (1) If X,Y are two random variables and oo € R, then E,(X + oY) =
E,X +oE,Y.

(2) (Tower property) If m < n, then E,,(E,X) = E,,X.

(3) If X is F,, measurable, and Y is any random variable, then E,(XY)=XE,Y.



Proposition 4.36. (1) If X is measurable with respect to F,, then E, X = X.
(2) If X is independent of F,, then E,X = EX.

Remark 4.37. We say X is independent of F,, if for every A € F,, and B C R, the events A
and {X € B} are independent.

Ezample 4.38. If X only depends on the (n+ 1), (n+2)t ... n'" coin tosses and not the
15t 20d o nth coin tosses, then X is independent of F,.



Proposition 4.39 (Independence lemma). If X is independent of F,, and Y is F,,-measurable,
and f: R — R is a function then

E,.f(X,)Y)= fo“ X =), where {x1,...,xm} = X(Q).



4.5. Martingales.
Definition 4.40. A stochastic process is a collection of random variables Xy, X1, ..., Xy.

FEzxample 4.41. Typically X, is the wealth of an investor at time n, or .S,, is the price of a
stock at time n.

Definition 4.42. A stochastic process is adapted if X,, is F,-measurable for all n. (Non-
anticipating.)

Remark 4.43. Requiring processes to be adapted is fundamental to Finance. Intuitively,
being adapted forbids you from trading today based on tomorrows stock price. All processes
we consider (prices, wealth, trading strategies) will be adapted.

Ezample 4.44 (Money market). Let Yy = Yy(w) = a € R. Define Y,,11 = (1 +1)Y,,. (Here r
is the interest rate.)

uSp(w) wpe1 =1,

Ezample 4.45 (Stock price). Let Sy € R. Define S,41(w) =
dS,(w) wnpy1 =-—1.



Definition 4.46. We say an adapted process M,, is a martingale if E, M, 1 = M,,. (Recall
E,Y=EY | F,).)

Remark 4.47. Intuition: A martingale is a “fair game”.

Ezample 4.48 (Unbiased random walk). If &;,...,&{x are i.i.d. and mean zero, then X, =
> r_y & is a martingale.



Remark 4.49. If M is a martingale, then for every m < n, we must have E,, M, = M,,.

Remark 4.50. If M is a martingale then EM,, = EMy = M.



4.6. Change of measure.
e Gambling in a Casino: If it’s a martingale, then on average you won’t make or lose money.
e Stock market: Bank always pays interest! Not looking for a “break even” strategy.
o Mathematical tool that helps us price securities: Find a Risk Neutral Measure.
> Discounted stock price is (usually) not a martingale.
> Invent a “risk neutral measure” which the discounted stock price is a martingale.
> Securities can be priced by taking a conditional expectation with respect to the risk
neutral measure. (That’s the meaning of E,, in Proposition 4.1.)



Definition 4.51. Let D,, = (1 4+ )~ be the discount factor. (So D,,$ in the bank at time
0 becomes 1$ in the bank at time n.)

e Invent a new probability mass function p.
¢ Use a tilde to distinguish between the new, invented, probability measure and the old one.
> P the probability measure obtained from the PMF p (i.e. P(A) =} 4 p(w)).

> E, E, conditional expectation with respect to P (the new “risk neutral” coin)

Definition 4.52. We say P and P are equivalent if for every A € Fy, P(A) = 0 if and
only if P(A) = 0.

Definition 4.53. @ risk neutral measure is an equivalent measure P under which D,S, is
a martingale. (L.e E,,(Dy+1Sn+1) = DpSy.)

Remark 4.54. If there are more than one risky assets, S, ..., S:k, then we require D,, S},
..+, DpSF to all be martingales under the risk neutral measure P.

Remark 4.55. Proposition 4.1 says that any security with payoff Viy at time N has arbitrage

free price V,, = DinEn(DNVN) at time n. (Called the risk neutral pricing formula.)



Proposition 4.56. Let P be an equivalent measure under which the coins are i.i.d. and
land heads with probability p1 and tails with probability G =1 — py.

(1) Under P, we have E,(Dyy1Sn41) = P5FEEAD,S,.

~ 1+r
(2) P is the risk neutral measure if and only if pyu+q1d = 1+r. (Explicitly p1 = 11-2:;1’

and §, = “_(1+’ )



Theorem 4.57. Let X, represent the wealth of a portfolio at time n. The portfolio is
self-financing portfolio if and only if the discounted wealth D, X, is a martingale under the
risk neutral measure P.

Remark 4.58. Recall a portfolio is self financing if X,,11 = ApSpi1 + (1 +7)(X, — AnSy)
for some adapted process A,.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.
(2) All replication has to be done using self-financing portfolios.



Proof of Proposition 4.1.



Ezample 4.59. Consider two stocks S* and S?, u =2, d = 1/2.

> The coin flips for S! are heads with probability 90%, and tails with probability 10%.

> The coin flips for S? are heads with probability 99%, and tails with probability 1%.

> Which stock do you like more?

> Amongst a call option for the two stocks with strike K and maturity N, which one will be
priced higher?



Remark 4.60. Even though the stock price changes according to a coin that flips heads with
probability p;, the arbitrage free price is computed using conditional expectations using the
risk neutral probability. So when computing E,, Vi, we use our new invented “risk neutral”
coin that flips heads with probability p; and tails with probability ;.

Concepts that will be generalized to continuous time.

o Probability measure: Lebesgue integral, and not a finite sum. Same properties.

o Filtration: Same intuition. No easy description.

e Conditional expectation: Same properties, no formula.

+ Risk neutral measure: Formula for P is complicated (Girsanov theorem.)

o Everything still works because of of Theorem 4.57. Understanding why is harder.



5. Stochastic Processes

5.1. Brownian motion.

e Discrete time: Simple Random Walk.
> X, = >.] &, where &’s are i.i.d. E§; = 0, and Range(§;) = {£1}.
o Continuous time: Brownian motion.
>Y, =X, +({t—n)p41 ift € n,n+1).
> Rescale: Y = \/eY;/.. (Chose /€ factor to ensure Var(Yy) ~t.)
> Let W, = iig%Yf.

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

> Named after Robert Brown (a botanist).
> Definition is intuitive, but not as convenient to work with.



(t—s)/e
o Ift,s are multiples of e: Y7 — Y ~ /& Z & =% N(0,t — s).

e Y — Y only uses coin tosses that are after s”, and so independent of Y.

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wy =W, ~N(0,t—s),
(2) Wi — WS is independent of F.



5.2. Sample space, measure, and filtration.

o Discrete time: Sample space Q = (w1, ...,wn).

e View (w1,...,wy) as the trajectory of a random walk.

o Continuous time: Sample space @ = C(]0,00)) (space of continuous functions).
> It’s infinite. No probability mass function!
> Mathematically impossible to define P(A) for all A C Q.



¢ Restrict our attention to G, a subset of some sets A C €2, on which P can be defined.
> G is a o-algebra. (Closed countable under unions, complements, intersections.)

o P is called a probability measure on (£2,G) if:
> P:G—[0,1], P(0) =0, P(Q) =1.
> P(AUB) = P(A)+ P(B) if A, B € G are disjoint.

> If A, € G, P(LIJ An) = lim P(A,).

¢ Random variables are measurable functions of the sample space:
> Require {X € A} € G for every “nice” A C R.
>Eg {X=1}€G, {X>5}eG, {Xe€[3,4)} g, etc.
> Recall {X € A} ={w e Q| X(w) € A}.



o Expectation is a Lebesgue Integral: Notation EX = / XdP = / X(w)dP(w).
Q Q
> No simple formula.
> If X = ZailAi, then EX = ZCLIP(Al)

1 A
> 14 is the indicator function of A: 14(w) = we
0 wégA



Proposition 5.3 (Useful properties of expectation).
(1) (Linearity) o, 8 € R, X,Y random variables, E(aX + 8Y) = aEX + SEY.
(2) (Positivity) If X > 0 then EX > 0. If X >0 and EX =0 then X = 0 almost surely.

(3) (Layer Cake) If X >0, EX :/ P(X >1t)dt.
0

(4) More generally, if ¢ is increasing, p(0) = 0 then Ep(X) = / O'(t) P(X > t)dt.
0

(5) (Unconscious Statistician Formula) If PDF of X is p, then Ef(X) = / f(@)p(x)dx.

— 00



o Filtrations:

>
>
>

v

Discrete time: F,, = events described using the first n coin tosses.

Coin tosses doesn’t translate well to continuous time.

Discrete time try #2: JF,, = events described using the trajectory of the SRW up to
time n.

Continuous time: F; = events described using the trajectory of the Brownian motion
up to time ¢.

If t; <t, A; C R then {th € Aq,.. .,th S An} € F;. (Need all t; < t')

As before: if s <t, then F, C F;.

Discrete time: Fy = {0, Q}. Continuous time: Fo = {4 € G| P(A4) € {0,1}}.



5.3. Conditional expectation.

Notation E¢(X) = E(X | F;) (read as conditional expectation of X given F;)

No formula! But same intuition as discrete time.

E; X (w) = “average of X over II;(w)”, where II;(w) = {w' € Q| W' (s) = w(s) Vs < t}.
Mathematically problematic: P(II;(w)) = 0 (but it still works out.)



Definition 5.4. E;X is the unique random variable such that:
(1) E;X is F;-measurable.

(2) For every A € Fy, / E, X dP = / XdP
A A

Remark 5.5. Choosing A = Q) implies E(E:X) = EX.

Proposition 5.6 (Useful properties of conditional expectation).

(1) If o, B € R are constants, X,Y, random variables E,(aX + fY) = «E; X + SE,Y .
(2) If X 20, then E; X > 0. Equality holds if and only if X =0 almost surely.

(8) (Tower property) If 0 < s <t, then Ei(E,X) = E,X.

(4) If X is F; measurable, and Y is any random variable, then Ey(XY) = X E;Y .

(5) If X is Fy measurable, then E:X = X (follows by choosing Y =1 above).

(6) If'Y is independent of Fy, then E,Y = EY.

Remark 5.7. These properties are exactly the same as in discrete time.



Lemma 5.8 (Independence Lemma). If X is F; measurable, Y is independent of F;, and
f = f(x,y): R? = R is any function, then

E f(X,Y)=g(Y), where  g(y) = Ef(X,y).

Remark 5.9. If py is the PDF of Y, then E, f(X,Y) = / (X, y) py (v) dy.
R



5.4. Martingales.

Definition 5.10. An adapted process M is a martingale if for every 0 < s < ¢, we have
E,M; = M,.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information
available today will not change your expected return.



Proposition 5.12. Brownian motion is a martingale.

Proof.



6. Stochastic Integration

6.1. Motivation.

e Hold b; shares of a stock with price S;.
o Only trade at times P={0=1t; < ...,t, =T}
n—1
o Net gain/loss from changes in stock price: Z by, ArS, where ApS =Sy, | — Sy,
k=0
n—1 T
o Trade continuously in time. Expect net gain/loss to be lim Z b, ARS = / by dS;.
I1Pll—0 —7 0
> ||P|| = maxk(tk+1 — tk).

n—1 T
> Ri -Stieltjes int R be, ARS = by dSt,
lemani lelt)es 1mtegra |\P1||rgo kz_o ¢ Rk /0 + t

> The & € [tg,tx+1] can be chosen ar%itrarily.
> Only works if the first variation of S is finite. False for most stochastic processes.



6.2. First Variation.
Definition 6.1. For any process X, define the first variation by

Vo (X) = H}lvinm Z' #X. 5 uzlvlnm Z' e ~ Xl

Remark 6.2. If X (t) is a differentiable function of ¢ then Vjo 71X < oo.
Proposition 6.3. EV|o W = oo

Remark 6.4. In fact, Vjg mjW = oo almost surely. Brownian motion does not have finite first
variation.

Remark 6.5. The Riemann-Stieltjes integral fOT b; AWy does not exist.



6.3. Quadratic Variation.

Definition 6.6. If M is a continuous time adapted process, define

n—1 n—1
M, M|y = i M, . — M, )?= 1 ALM)?.
[ ) ]T HPlHrgOkZ:O( try1 tk) HPIHH—IWI;J( k )

Proposition 6.7. For continuous processes the following hold:

(1) Finite first variation implies the quadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.



Proposition 6.8. [W,W]r =T almost surely.
Remark 6.9. For use in the proof: Var(N(0,02)%) = EN(0,0%)* — (EN(0,0%)?%)? = 202.
Proof:.



Proposition 6.10. W72 — [W, W], is a martingale.



Theorem 6.11. Let M be a continuous martingale.
(1) EM? < oo if and only if E[M, M]; < cc.
(2) In this case M? — [M, M), is a continuous martingale.

(3) Conversely, if M? — A; is a martingale for any continuous, increasing process A
such that Ay = 0, then we must have Ay = [M, M];.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.



Remark 6.13. If X has finite first variation, then |X;1s5 — X¢| = O(dt).
Remark 6.14. If X has finite quadratic variation, then | X, 5 — X;| & O(V/6t) > O(dt).



6.4. Ito Integrals.

e D; = D(t) some adapted process (position on an asset).
e« P={0=tg <ty <---} increasing sequence of times.
. HPH = max; ti+1 — ti, and AiX = Xti+1 — Xt

o W : standard Brownian motion.
n—1

o Ip(T)= Z Dy, AW + Dy, (Wr — Wy,)
i=0

i

Definition 6.15. The Ito Integral of D with respect to Brownian motion is defined by

T
Iy = / D,dW, = lim Ip(T).
0

I Pl|—0
Remark 6.16. Suppose for simplicity T' = t,,.
(1) Riemann integrals: lim Z D¢, A;W exists, for any & € [t;, ti1].
IlP]|—0
(2) Itd integrals: Need &; = t; for the limit to exist.



T
Theorem 6.17. IfE/ D} dt < co a.s., then:
0

(1) It = lim Ip(T) exists a.s., and EI(T)? < cc.
I Pll—0

t s
(2) The process It is a martingale: El; = Es/ D, dW, = / D, dW, = I
. 0 0
(8) [I, 1)1 :/ D?dt a.s.
0

T
Remark 6.18. If we only had / D?dt < oo a.s., then I(T) = ”;)i‘llrn OIP(T) still exists, and
0 —

is finite a.s. But it may not be a martingale (it’s a local martingale).



T 2 T
Corollary 6.19 (It6 isometry). E(/ D, th> = E/ D? dt
0 0

Proof.



Intuition for Theorem 6.17 (2). Check Ip(T') is a martingale.



Proposition 6.20. If o,& € R, D, D adapted processes

T 3 T T
/ (aDg 4+ aDy) dW, = a/ D, dW, + d/ D, dWs
0 0 0

T, T
Proposition 6.21. Dy, dW, + Dy dW,
0 i)

Question 6.22. If D > 0, then must fOT D,dW, > 07



6.5. Semi-martingales and It6 Processes.

t
Question 6.23. What is / WsdW,?
0



Definition 6.24. A semi-martingale is a process of the form X = Xy + B + M where:

> Xg is Fp-measurable (typically Xy is constant).
> B is an adapted process with finite first variation.
> M is a martingale.

Definition 6.25. An [t6-process is a semi-martingale X = Xg + B + M, where:
t t
> By = / bs ds, with / |bs| ds < oo
0 0
t t
> M, = / o5 AW, with / log|?ds < oo
0 0

Remark 6.26. Short hand notation for Itd processes: dX; = b; dt + oy dWj.

Remark 6.27. Expressing X = Xo+B+M (or dX = bdt+o dW) is called the semi-martingale
decomposition or the Ité decomposition of X.



Theorem 6.28 (Ito formula). If f € C12, then
1.
df (t, Xi) = Ouf (¢, Xo) dt + 0, f (¢, Xy) d Xy + iﬁ_ﬁf(t,XL) X, X],

Remark 6.29. This is the main tool we will use going forward. We will return and study it
thoroughly after understanding all the notions involved.



Proposition 6.30. If X = Xy + B+ M, then [X, X] = [M, M].



Proposition 6.31 (Uniqueness). The It6 decomposition is unique. That is, if X = Xo +
B+M=Yy,+C+ N, with:

> B, C bounded variation, By = Cy =0

> M, N martingale, My = Ny = 0.

Then Xo =Yy, B=C and M = N.



Corollary 6.32. Let dX; = b, dt + o, dW; with E [ bsds < co and E [, 02 ds < co. Then
X is a martingale if and only if b = 0.



T T T
Definition 6.33. If dX = bdt + o dW, define / D;dX; = / D;b; dt +/ Doy dW;.
0 0 0

T T
Remark 6.34. Note / D;b; dt is a Riemann integral, and / Doy dW; is a It6 integral.
0 0



6.6. Itd’s formula.

Remark 6.35. If f and X are differentiable, then
df (t, Xy) = Op f(t, X¢) dt + 0. f(t, Xy) d Xy



Theorem (It6’s formula, Theorem 6.28). If f € C*2, then
df (t, Xs) = Ou f(t, Xy) dt + O f (£, X¢) dX; + %a;if(t, X,) d[X, X];
Remark 6.36. If dX; = by dt + oy dW; then
df (t, X;) = (8tf(t, X)) + b + %af) dt + 8, f(t, X,)op AW, .



Intuition behind Ité’s formula.



Ezample 6.37. Find the quadratic variation of W2.



t
FEzxzample 6.38. Find/ Wy dWs.
0



Ezxample 6.39. Let My = W, and N, = Wt2 —t.

> We know M, N are martingales.
> Is M N a martingale?



Ezample 6.40. Let X; = tsin(W,). Is X? — [X, X]; a martingale?



Ezample 6.41. Say dM; = o; dW;. Show that M? — [M, M] is a martingale.



7. Review Problems

Problem 7.1. If 0 < r < s < t, find E(WW;) and E(W,W,W;).



Problem 7.2. Define the processes X,Y, Z by

W, t
X, = / e’ ds, Y;= exp(/ Wy ds) AR tXt2
0 0

Decompose each of these processes as the sum of a martingale and a process of finite first
variation. What is the quadratic variation of each of these processes?



Problem 7.3. Define the processes X,Y by

t t
Xﬁ:“/ W, ds, Yt:/ W, dW, .
0 0
Given 0 < s < t, compute EX;, EY;, E,X;, E.Y;.



t
Problem 7.4. Let M; = / WsdWs. Find a function f such that
0

5()(1—8fexp My — /fsW ds)

is a martingale.



Problem 7.5. Suppose 0 = o is a deterministic (i.e. non-random) process, and M is a
martingale such that d[M, M|, = o2 dt.

t
Xt:/ oy dW,, .
0

(1) Given \,s,t € R with 0 < s < t compute Ee*Vt and E erM:—Ms

(2) If r < s compute E exp(AM,. + u(M; — My)).

(3) What is the joint distribution of (M,, My — M;)?

(4) (Lévy’s criterion) If d[M, M]; = dt, then show that M is a standard Brownian
motion.



Problem 7.6. Define the process X,Y by

t t
X:/stVS7 Y:/Wsds.
0 0
Find a formula for EX} and EY;" for any n € N.



t
Problem 7.7. Let M; = / WsdWs. For s < t, is My — M independent of F,? Justify.
0



Problem 7.8. Determine whether the following identities are true or false, and justify your
answer.

t
(1) e*'sin(2W;) = 2/ e cos(2W,,) dW.
0
t
(2) Wy = / sign(Ws) dWs. (Recall sign(z) = 1 if > 0, sign(z) = —1 if < 0 and

0
sign(z) =01if z =0.)



8. Black Scholes Merton equation

8.1. Market setup and assumptions.

e (Cash: simple interest rate r in a bank.

e Let At be small. C,, o; be cash in bank at time n At.

« Withdraw at time n At and immediately re-deposit: C(,,11)a¢ = (1 + 7 At)Cpae.

e Set t = nAt, send At = 0: 8,C = rC and C; = Cye™.

e 7 is called the continuously compounded interest rate.

e Alternately: If a bank pays interest rate p after time 7', then the equivalent continuously
compounded interest rate is r = & In(1 + p).



o Stock price: Sipar = (14 r At)S; + noise.
> Variance of noise should be proportional to At.
> Variance of noise should be proportional to S;.
L4 St-‘,—At - St = T'St At + O'St(AWt).

Definition 8.1. A Geometric Brownian motion with parameters «, o is defined by:
dSt = O[St dt + O'St th .

e «a: Mean return rate (or percentage drift)
o o: volatility (or percentage volatility)



2
Proposition 8.2. §; =5, exp((a — %)t + aWt)



Market Assumptions.

1 stock, Price S, modelled by GBM(«, o).

Money market: Continuously compounded interest rate r.
> Cy = cash at time ¢ = Cpe". (Or 8;C; = rC;.)

> Borrowing and lending rate are both r.

Frictionless (no transaction costs)

Liquid (fractional quantities can be traded)



8.2. The Black, Sholes, Merton equation. Consider a security that pays Vi = g(St) at
maturity time 7.

Theorem 8.3. If the security can be replicated, and f = f(t,x) is a function such that the
wealth of the replicating portfolio is given by X; = f(t,St), then:

o2x?
(8.1) O f +rad. f+ O2f—rf=0 x>0,t<T,
(8:2) f(t,0) = g(0)e "= t<T,
(8.3) (T, z) = g(x) x>0,

Theorem 8.4. Conversely, if f satisfies (8.1)—(8.3) then the security can be replicated, and
X = f(t,S:) is the wealth of the replicating portfolio at any time t < T.

Remark 8.5. Wealth of replicating portfolio equals the arbitrage free price.
Remark 8.6. g(z) = (x — K) is a European call with strike K and maturity 7.
Remark 8.7. g(z) = (K — z)7 is a European put with strike K and maturity 7'



Proposition 8.8. A standard change of variables gives an explicit solution to (8.1)—(8.3):

(8.4) f(t,x)z/_ie‘”g(xexp((r—i)T—I—Uﬁy))e_yz\/Q/;dy, T=T-—t.

Corollary 8.9. For European calls, g(x) = (z — K)*, and

(8:5) f(t,2) = e(t,2) = eN(dy (T = t,2)) = Ke " TON(d_(T — t,))
where

<8-6> ¥ S () (7))

and

(8.7) N(z) < \/12? /; eV qy

is the CDF of a standard normal variable.



Remark 8.10. Equation (8.1) is called a partial differential equation. In order to have a
unique solution it needs:

(1) A terminal condition (this is equation (8.3)),
(2) A boundary condition at = = 0 (this is equation (8.2)),
(3) A boundary condition at infinity (not discussed yet).
> For put options, g(z) = (K — z)™, the boundary condition at infinity is

lim f(t,z) =0.
Tr—r0o0
> For call options, g(z) = (x — K)*, the boundary condition at infinity is
lim [f(t,z) — (z — Ke_T(T_t))] =0 or ft,z)~(z—Ke " TY) asz— .

r—r 00



Definition 8.11. If X; is the wealth of a self-financing portfolio then
dXt = At dSt + T'(Xt — AtSt) dt
for some adapted process A; (called the trading strategy).



Proof of Theorem 8.3.



Proof of Theorem 8.4.



Proof of Theorem 8.4 (without discounting).



Remark 8.12. The arbitrage free price does not depend on the mean return rate!



Question 8.13. Consider a European call with maturity T and strike K. The payoff is
Vi = (St — K)*. Our proof shows that the arbitrage free price at time t < T is given by
Vi = c(t, St), where ¢ is defined by (8.5). The proof uses Itd’s formula, which requires ¢ to be
twice differentiable in x; but this is clearly false at t = T. Is the proof still correct?



Proposition 8.14 (Put call parity). Consider a European put and European call with the
same strike K and maturity T.

> ¢(t,St) = AFP of call (given by (8.5))

> p(t,Sy) = AFP of put.

Then c(t,z) — p(t,x) =z — Ke " T8 and hence p(t,z) = Ke="T=) — x — ¢(t, x).



8.3. The Greeks. Let c(t,x) be the arbitrage free price of a European call with maturity 7'
and strike K when the spot price is . Recall
2

—rr def 1 x g .
c(t,z) =axN(dy) — KeT""N(d-), di= Jﬁ(ln<K) + (r:l: ) )T) , 7T=T—1.
Definition 8.15. The delta is O0,c.
Remark 8.16 (Delta hedging rule). A; = 9,¢(t, S:).

Proposition 8.17. 9,¢ = N(dy)



1 —d?
Definition 8.18. The Gamma is 92c and is given by 9%c = exp( +) .
To\ 2T 2

agxr

Definition 8.19. The Theta is 0:c, and is given by dyc = —rKe ""N(d_) — NG
=

N'(dy)



Proposition 8.20. (1) ¢ is increasing as a function of x.
(2) c is conver as a function of x.
(8) c is decreasing as a function of t.



Remark 8.21. To properly hedge a short call, you always borrow from the bank. Moreover
Ar=1if S > K, Ar =0if S < K.



Remark 8.22 (Delta neutral, Long Gamma). Say xg is the spot price at time ¢.

e Short d,¢(t, o) shares, and buy one call option valued at ¢(t, o).

o Put M = x90,c(t, x0) — c(t, zp) in the bank.

o What is the portfolio value when if the stock price is  (and we hold our position)?
> (Delta neutral) Portfolio value = ¢(t, ) — tangent line.
> (Long gamma) By convexity, portfolio value is always non-negative.



9. Multi-dimensional It6 calculus

e Let X and Y be two Itd processes.

o P={0=1t1 <t1--- <ty =T} is a partition of [0, T].
Definition 9.1. The joint quadratic variation of X,Y, is defined by

n—1

X, Y|r= 1 Xeoo — X)) (Vi , — Y,
[ ) ]T HI_}\T&Q;( tir1 t,l)( tit1 tz)’

Remark 9.2. The joint quadratic variation is sometimes written as d[X,Y]; = dX; dY;.



Lemma 9.3. [X,Y]r =3([X+Y, X +Y]r - [X - Y, X - Y]r)



Proposition 9.4 (Product rule). d(XY); = X;dY; + YidX; + d[X, Y],



Proposition 9.5. Say X,Y are two semi-martingales.

o Write X = Xg+ B+ M, where B has bounded variation and M is a martingale.
o WriteY =Yy + C + N, where C' has bounded variation and N is a martingale.
e Then d[X,Y]; =d[M, N];.

Remark 9.6. Recall, all processes are implicitly assumed to be adapted and continuous.



Corollary 9.7. If X is a semi-martingale and B has bounded variation then [X, B] = 0.



Notation.

e d-dimensional vectors: Write x = (x1,...,24) € R%

o d-dimensional random vectors: X = (Xy,...,X4), where each X; is a random variable.

o d-dimensional stochastic processes: X; = (X},..., X{), where each X is a stochastic
process.

> For scalars (or random variables): X denotes the i-th power of X.
> For vectors (or random random vectors): X* denotes the i-th coordinate of X.
> There is no ambiguity (can’t take powers of vectors, or coordinates of scalars)
o Alternate notation used in many books: Use X (¢) for the d-dimensional stochastic process,
and X;(¢) for the i-th coordinate.
e May sometimes write X = (X!,..., X9) for random vectors, instead of (X1,..., Xg).



Remark 9.8 (Chain rule). If X is a differentiable function of ¢, then
d
d(f(t, X1)) = Ouf(t, Xe) dt + > 0if(t, Xy) dX]

i=1

Remark 9.9 (Notation). Oif = %{, oif = g—i.



Theorem 9.10 (Multi-dimensional Ité formula).

e Let X be a d-dimensional Ité process. X; = (X},..., X{).
e Let f = f(t,x) be a function that’s defined fort € R, v € R%,
e Suppose f € CY2. That is:

> f is once differentiable in t

> f is twice in each coordinate x;

> All the above partial dem’vatives are continuous. Then:

d(f(t, Xy)) = 0uf(t, Xy) dt+Zaf (t, X4) dXZ Za 0 f(t, Xt) d[X? X7,

=1



Remark 9.11 (Integral form of Itd’s formula).
T d T 4
£ X0~ $0.%0) = [ afeXar+ Y [ aufe X0 dx;
0 —1Jo

1 = o
+5 Z/ 9,0, f(t, X;) d[X*, X7],
i 0

Remark 9.12. As with the 1D Ito, will drop the arguments (¢, X;). Remember they are there.



Intuition behind Theorem 9.10.



To use the d-dimensional It6 formula, we need to compute joint quadratic variations.

Proposition 9.13. Let M, N be continuous martingales, with EM? < oo and EN}? < cc.

(1) MN — [M, N] is also a continuous martingale.
(2) Conversely if MN — B is a continuous martingale for some continuous adapted,
bounded variation process B with By = 0, then B = [M, N].

Proof.



Proposition 9.14. (1) (Symmetry) [X,Y] = [Y, X]
(2) (Bi-linearity) If « € R, XY, Z are semi-martingales, [X,Y +aZ] = [X,Y]|+a[X, Z].

Proof.



Proposition 9.15. Let M, N be two martingales, o, T two adapted processes.
t t
o Let Xy :/ osdM; and Yy :/ Ts ANs.
0 0
e Then [X,Y]; = [} o575 d[M, N],.
Remark 9.16. Alternately, if dX; = oy dM; and dY; = 14 dNy, then d[X, Y] = oy d[M, N]s.

Intuition.



Proposition 9.17. If M, N are continuous martingales, EM? < oo, EN? < oo and M, N
are independent, then [M, N] = 0.

Remark 9.18 (Warning). Independence implies E(M;N;) = EM;EN,. But it does not imply
E,(M;N;) = E;M;E;N;. So you can’t use this to show M N is a martingale, and hence
conclude [M, N] = 0.

Correct proof.



Remark 9.19. [M, N] = 0 does not imply M, N are independent. For example:
e Let My = [} 1w, <oy dW,
e Let Ny = [] 1iw, 50y AW,



Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W1, ...,W9) is a Brownian motion if:

(1) Each coordinate W* is a standard 1-dimensional Brownian motion.

(2) For i # j, the processes W* and W7 are independent.
a  i=j,

Remark 9.21. If W is a d-dimensional Brownian motion then d[W*, W7], = {Odt it



Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.

o At =7,
(2) The joint quadratic variation satisfies: dW*, W], = {

0dt i#7.
Then M is a d-dimensional Brownian motion.

Proof. Find Ese’\Mti"’“Mtj using It6’s formula, similar to Problem 7.5.



Ezample 9.23. Let f € C12, W be a d-dimensional Brownian motion, and set X; = f (¢, W;).
Find the Itd6 decomposition of X.



Question 9.24. Let W be a 2-dimensional Brownian motion. Let X; = In(|W;]?) =
In((WhH2 + (W2)?). Is X a martingale?



10. Risk Neutral Pricing

Goal.

e Consider a market with a bank and one stock.

o The interest rate R, is some adapted process.

o The stock price satisfies dS; = a4 Sy dt + 0+S; dW;. (Here «, o are adapted processes).
¢ Find the risk neutral measure and use it to price securities.

Definition 10.1. Let D; = exp(— fot R ds) be the discount factor.

Remark 10.2. Note ;D = —R;D;.
Remark 10.3. D, dollars in the bank at time 0 becomes $1 in the bank at time ¢.



Theorem 10.4. The (unique) risk neutral measure is given by dP = Zp dP, where
T T
1 -R
ZT:eXp<—/ 9tth—7/ efdt), g, = L1
0 2 Jo Ot

Theorem 10.5. Any security can be replicated. If a security pays Vi at time T, then the
arbitrage free price at time t is

Vi = DitEt(DTVT) = E, (exp(/tT —R, ds) VT)) .

Remark 10.6. We will explain the notation dP = Zp dP and prove both the above theorems
later.



Definition 10.7. We say P is a risk neutral measure if:
(1) Pis equivalent to P (i.e. P(A) =0 if and only if P(A) = 0)
(2) D.S; is a P martingale.
Remark 10.8. As before, if P is a new measure, we use E to denote expectations with respect
to P and E; to denote conditional expectations.
Ezxample 10.9. Fix T > 0. Let Z7 be a Fpr-measurable random variable.
e Assume Zr > 0and EZr = 1.

o Define P(A):E(ZTlA):/ Zr dP.
A

o+ Can check EX = E(ZrX). That is / XdP = | X ZpdP.
Q Q

« Notation: Write dP = Zy dP.
Lemma 10.10. Let Z, = E,Zr. If X, is Fi-measurable, then E;X = Z%ES(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem. g



Theorem 10.11 (Cameron, Martin, Girsanov). Fiz T > 0, and define:
by = (b}, ..., b%) a d-dimensional adapted process.

W' a d-dimensional Brownian motion.

Wy = Wi + [) byds (i.e. AWy = by dt + dW, ).

dP = Zy dP, where

t 1 t
Zt:exp<—/ bs-dWs—i/ |bs|2ds)
0 0

If Z is a martingale, then P is an equivalent measure under which W is a Brownian motion
up to time T
Remark 10.12. Note Wt is a vector.

(1) So W, = W, + fot bs ds means W; = W} + fot bt ds, for each i € {1,...,d}.

(2) Similarly, dW; = b; dt + dW; means dW; = b} dt + dW; for each i € {1,...,d}.

Remark 10.13. fg bs - AW means fot bt dW? (dot product).

7,15



d
Proposition 10.14. dZ; = —Z;b; - dW;. Explicitly, in coordinates, dZy = —Z; Z bi de.
i=1

Question 10.15. Looks like Z is a martingale. Why did we assume it in Theorem 10.117



Idea behind the proof of Theorem 10.11.



Theorem (Theorem 10.4). The (unique) risk neutral measure is given by dP = Zp dP,

where - .
1 - R
ZT:eXp<—/ 9tth—7/ efdt), g, = 2L
0 2 Jo Ot

Proof of Theorem 10.4.



Theorem 10.16. X; represents the wealth of a self-financing portfolio if and only if Dy X;
is a P martingale.

Remark 10.17. The proof of the backward direction requires the martingale representation
theorem, and is outlined on your homework.

Remark 10.18. This is the analog of Theorem 4.57

Proof of the forward direction.



Theorem (Theorem 10.5). Any security can be replicated. If a security pays Vr at time T,
then the arbitrage free price at time t is

Vi = DitEt(DTVT) = E, (exp(/tT —R, ds) VT)) .

Remark 10.19. This is the analog of Proposition 4.1.
Proof of Theorem 10.5.



11. Black Scholes Formula revisited

o Suppose the interest rate R; = r (is constant in time).
e Suppose the price of the stock is a GBM(a, o) (both «, ¢ are constant in time).

Theorem 11.1. Consider a security that pays Vi = g(St) at maturity time T. The arbitrage
free price of this security at any time t < T is given by f(t,S;), where

(8.4) f(t,x):/_o;e_”g(xexp(<r—f)T—i—Uﬁy))e_yz\/;dy, T=T-—t.

Remark 11.2. This proves Proposition 8.8.



Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a European call with
strike K and maturity T s given by:

(8:5) e(t,7) = eN(dy (T — t,2)) — Ke 7T ON(d_(T ~ t,z))
where

= e o)+ 0+ 5))
and

(8.7) N(x) Lot \/127 /_; e V/2 dy

is the CDF of a standard normal variable.

Remark 11.4. This proves Corollary 8.9.



12. Review problems

Problem 12.1. Let f be a deterministic function, and define

t
X déf/ f(s)Wsds.
0
Find the distribution of X.



Problem 12.2. Suppose o,T,p are three deterministic functions and M and N are two
continuous martingales with respect to a common filtration {F;} such that My = Ny = 0,
and

d[M,M}t:O'tdt, d[N,N]t:Ttdt, and d[M,N]t:ptdt

(a) Compute the joint moment generating function E exp(AM (¢) + pN(1)).

(b) (Lévy’s criterion) If 0 = 7 = 1 and p = 0, show that (M, N) is a two dimensional
Brownian motion.



Problem 12.3. Consider a financial market consisting of a risky asset and a money market
account. Suppose the return rate on the money market account is r, and the price of the
risky asset, denoted by S, is a geometric Brownian motion with mean return rate a and
volatility o. Here r, & and ¢ are all deterministic constants. Compute the arbitrage free price

of derivative security that pays
1 T
Vp == Sy dt
T=7 /0 t

at maturity 7. Also compute the trading strategy in the replicating portfolio.



Problem 12.4. Let X ~ N(0,1), and a,a, 8 € R. Define a new measure P by
dP = exp(aX + 6) dP.
Find o, 8 such that X +a ~ N(0,1) under P.



Problem 12.5. Let xg,p, 0,0 € R, and suppose X is an Itd process that satisfies
dX(t) =0(p— X;)dt + o dWy,

with Xg = .

(a) Find functions f = f(¢) and g = g(s,t) such that

X(t) = () + / gs.8) dWV,

The functions f, g may depend on the parameters zq, 8, u and o, but should not depend
on X.

(b) Compute EX; and cov(X;, X;) explicitly.



Problem 12.6. Let 6 € R and define
0%t

Given 0 < s < t, and a function f, find a function such that

E f(Z) = 9(Z(s)).
Your formula for the function g can involve f, s, t and integrals, but not the process Z or
expectations.



Problem 12.7. Let W be a Brownian motion, and define

t
B; = / sign(W) dWs .

0
(a) Show that B is a Brownian motion.
(b) Is there an adapted process o such that

¢
Wt = / O dBS ?
0

If yes, find it. If no, explain why.
(c) Compute the joint quadratic variation [B, W].
(d) Are B and W uncorrelated? Are they independent? Justify.



Problem 12.8. Let W be a Brownian motion. Does there exist an equivalent measure P
under which the process tW, is a Brownian motion? Prove it.



	1. Preface.
	2. Syllabus Overview
	3. Replication and Arbitrage
	3.1. Replication and arbitrage free pricing
	3.2. Example: One period Binomial model

	4. Multi-Period Binomial Model.
	4.1. Quick review probability (finite Sample spaces)
	4.2. Random Variables and Independence
	4.3. Filtrations
	4.4. Conditional expectation.
	4.5. Martingales
	4.6. Change of measure.

	5. Stochastic Processes
	5.1. Brownian motion
	5.2. Sample space, measure, and filtration.
	5.3. Conditional expectation.
	5.4. Martingales

	6. Stochastic Integration
	6.1. Motivation
	6.2. First Variation
	6.3. Quadratic Variation
	6.4. Itô Integrals
	6.5. Semi-martingales and Itô Processes.
	6.6. Itô's formula

	7. Review Problems
	8. Black Scholes Merton equation
	8.1. Market setup and assumptions
	8.2. The Black, Sholes, Merton equation
	8.3. The Greeks

	9. Multi-dimensional Itô calculus
	10. Risk Neutral Pricing
	11. Black Scholes Formula revisited
	12. Review problems

