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1. Preface.

These are the slides I used while teaching this course in Fall 2021. I projected them
(spaced out) in class, and filled in the proofs by writing over them. The annotated version of
these slides with handwritten proofs, blank slides (so you take notes), and the compactified

un-annotated version for quick review can be found on the class website. The IATEXsource of
these slides is also available on git.



2. Syllabus Overview R f

o Class website and full syllabuséhttps ://wuw.math.cmu.edu/~gautam/sj/teaching/2021-22/944-scalc-financel
e TA’s: Shukun Long <shukunl andrew.cmu.edu>.¢_
e Homework Due: 10:10AM Oct 28, Nov 4, 11, 23, 30, Dec 74/
o Midterm: Tue, Nov 16, in class (May be delayed to Nov 18 if we have not covered It6’s formula in time.)
« Homework: ==
> Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
=2 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
> One homework assignments can be turned in 24h late without penalty.
> Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines, etc.).
> Collaboration is encouraged. Homework is not a test — ensure you learn from doing the homework.
> You must write solutions independently, and can only turn in solutions you fully understand.
e Academic Integrity
> Zero tolerance for violations (automatic R).
> Violations include:
- Not writing up solutions independently and/or plagiarizing solutions
— Turning in solutions you do not understand.
— Seeking, receiving or providing assistance during an exam.
> All violations will be reported to the university, and they may impose additional penalties.
e Grading: 10% homework, 30% midterm, 60% final.
: o A




Course Outline.
» Review of Fundamentals{ Replication. arbitrage free pricing.
o Quick study of the multi-period binomial model.

> Simple example of replication / arbitrage free pricing.
> Understand conditional expectations. (Have an explicit formula.)
> Understand measurablity / adaptedness. (Can be stated easily in terms of coin tosses that have / have not occurred.)
> Understand risk neutral measures. Explicit formula!
o Develop tools to price securities in continuous time.
> Brownian motion (not as easy as coin tosses)
> Conditional expectation: No explicit formula!
> It6 formula: main tool used for computation. Develop some intuition.
> Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need a working knowledge.
> Derive and understand the Black-Scholes formula.



3. Replication and Arbitrage

3.1. Replication and arbitrage free pricing.

o Start with a financial market consisting of traded assets (stocks, bonds, money market, options, etc.)
» We model the price of these assets through random variables (stochastic processes).
o« NoArbitrage Assump :

T a ” ave to take risk. (Can’t make something out of nothing.)
> Mathematically: For any trading strategy such that X, = 0, and X,, > 0, you must also have X,, = 0 almost surely.
> Equivalently: There doesn’t exist a trading strategy with Xo = 0, X,, > 0 and P(X,, > 0) > 0.
» Now consider a non-traded asset Y (e.g. an option). How do you price it?

o Arbitrage free price: If given the opportunity to trade Y at price Vp, the market remains arbitrage free, then we say Vp is the arbitrage free price of Y
No dol o

wj(w.{' A»J(_ d i q"(" o 7; ’WQAL y
-~ 7

{04%\M9L,
=0 L X > O







o We will almost always find the arbitrage free price by replication.

> Say the non-traded asset pays Vi at tIne Iv—te-g (ol OPTIONs ).
> Try and replicate the payoff:
— Start with X dollars.
— Use only traded assets and ensure that at maturity Xy = Vy.
> Then the arbitrage free price is uniquely determined, and must be Xj.

Remark 3.1. The arbitrage free price is unique if and only if there is a replicating strategy! In this case, the arbitrage free price is exactly the initial capital of the
replicating strategy.
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3.2. Example:y One period Binomial model.
e Consider a market with a stock, and money market account.

« Interest rate for borrowing and lending is 7. No transaction costs. Can buy and sell fractional quantities of the stock.

o Model assumption: Flip a coin that lands heads with probability p; € (0,1) and tails with probability ¢; = 1 — p;. Model S; = uSy if heads, and S; = dS; if tails.
> Sy is stock price at time 0 (known).
> S is stock price after one time period (random).
> u,d are model parameters (pre-supposed). Called the up and down factors. (Will always assume 0 < d < u.)

Proposition 3.2. There’s no arbitrage in this model if and only if d <1+ 71 < u.
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Proposition 3.3. Say a security pays Vi at time 1 (Vy can depend on whether the coin flip is heads or tails). The arbitrage free price at time 0 is given by
B 1 1+r—d o ou—(1+7r
-——9 W = P1V1( )+ @Vi(T)) = 1 ( )

E here py = = :
gy Vi, where Py 3 q
Vi(H V
The replicating strategy holds Ay = L(H) - 1( ) shares of stock at time 0.
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4. lMulti-Period Binomial Model.

o Same setup as the one period case 0 < d < 1+ r < u, and toss coins that land heads with probability p; and tails with probability ¢;.

e Except now the security matures at time N > 1.
Stock price: Sp41 = wS, if n + 1-th coin toss is heads, and S, ;1 = dS,, otherwise.
To replicate it a security, we start with capital X.
Buy Ay shares of stock, and put the rest in cash.

Get X1 = AopSy + (1 + T‘)(XO - A()S()).
Repeat. Self Financing Condition. X, 11 = ApSpi1 + (1 +7)(X,, — ALS,).

Adaptedness: A,, can only depend on outcomes of coin tosses before n!
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Proposition 4.1. Cpnsider a security that pays Vy at time N. Then for any n < N:
v

1 = nt1(wnt1 = H) — Vg1 (wny1 =T)
Vi =8 Vn. A, = .
1 ~|—rf N (u—d)S,

e V, is the arbitrage free price at time n < N. e - 7 A \———\ j

o Ay is the number of shares held in the replicating portfolio at time n (trading strategy).
Question 4.2. Why does this work? é:-—\
Question 4.3. What is E,, ? (It’s different from E, and different from E,,).
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4.1. Quick review probability (finite Sample spaces). This is just a quick reminder, to fix notation. Read one of the references. or look over the prep material /
videos for a more through treatment. The only thing we will cover in any detail is conditional expectation.
Let N € N be large (typically the maturity time of financial securities).

Definition 4.4. The sample space is the set Q = {(w1,...,wn) | each w; represents the outcome of a coin toss.}
L

> E.g w;, € {H,T}, or w; € {£1}. (Each w; could also represent the outcome of the roll of a M sided die.)
Definition 4.5. A sample point is a point w = (wy,...,wy) € Q.
> Each sample point represents the outcome of a sequence of all coin tosses from 1 to N.

Definition 4.6. A probability mass function is a function p: © — [0,1] such that Y o p(w) = 1.

ey

Ezample 4.7. Typical example: Fix p; € (0,1), g1 =1 — p; and set p(w) = pfl(w)qr{(w). Here H(w) is the number of heads in the sequence w = (w1, ...,wy), and T(w) is
the number of tails.

Definition 4.8. An event is a subset of Q. Define P(A) =3 _, p(w).
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4.2. Random Variables and Independence.

Definition 4.10. A random wvariable is a function X : Q — R.

g —&

I we=+1, . . .
Ezample 4.11. X(w) = { 1 2 1 is a random variable corresponding to the outcome of the second coin toss.
- Wwo = —1,
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Definition 4.12. The ezxpectation of a random variable X is EX = Y X (w)p(w).
Remark 4.13. Note if Range(X) = {z1,..., Zp}, then EX = Z’X(w)p(w) =>"Tz,P(X =1;).
Definition 4.14. The variance of a random variable is Var(X) = E(X — EX)?. ll

Remark 4.15. Note Var(X) = EX? — (EX)2.
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Definition 4.16. Two events are independent if P(AN B) = P(A)P(B).

Definition 4.17. The events Ay, ..., A, are independent if for any sub-collection Aiy, ..., A, we have
P(A;, NA;,N---NA;,) =P(A;,)P(A;,) - P(A;,) .

Remark 4.18. When n > 2, it is not enough to only require P(A; N A2 N---N A,) = P(A))P(Az)--- P(Ay)



Definition 4.19. Two random variables are independent if P(X =z, Y =y) = P(X = 2)P(Y =y) for all z,y € R.
Definition 4.20. The random variables X1, ..., X,, are independent if for all z1,...,z, € R we have
P(X1 =T, X2 = .I'Q,...,Xn = l‘n) = P(Xl = l‘l)P(XQ = :IJQ)P(Xn = .’L‘n)

Remark 4.21. Independent random variables are uncorrelated, but not vice versa.



‘ 4.3. Filtrations. ‘
efinition 4.22. We define a filtration on  as follows:

> ]:0 = {@, Q}
> Fy = all events that can be described by only the first coin toss. E.g. A = {w|w; = +1} € F;.
> Fn = all events that can be described by only the first n coin tosses. E.g. A= {w|w; =1, wz = —1,w, =1} € F,.

Remark 4.23. Note {0,Q} = Fy C F; C--- C Fn = P(9).
Remark 4.24. If A, B € F,,, then so do A¢, B¢, ANB, AUB, A— B, B — A.
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Definition 4.25. Let n € {0,..., N}. We say a random variable X is F,-measurable if X(w) only depends on wy, ..., wy.

> Equivalently, for any B C R, the event {X € B} € F,. = = -
Remark 4.26 (Use in Finance). For every n, the trading strategy at time n (denoted by A,) must be F,, measurable. We can not trade today based on tomorrows price.
R

Ezample 4.27. If we represent ) as a tree, J,, measurablity can be visualized by checking constancy on leaves.
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4.4. Conditional expectation.
Definition 4.28. Let X be a random variable, and n < N. We define E(X | F,,) = E, X to be the random variable given by

E.X(w)= Y  zP(X=2|l,w)), where I,(w)={we€Q|w)=uw, ...,w}=uwn}
z;€Range(X)

Remark 4.29. E, X is the “best approximation” of X given only the first n coin tosses.

Remark 4.30. The above formula does not generalize well to infinite probability spaces. We will develop certain properties of E,,, and then only use those properties going
forward.

Ezample 4.31. If we represent () as a tree, E, X can be computed by averaging over leaves.
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4.4. Conditional expectation. o~

Definition 4.28. Let X be a random variable, and n < N. We define E(X | F,) = E, X
to be the random wvariable given by

EXw) = Y  xzPX=u |’@)
- xiERange(X)v

where | II,(w) = {w' € Q|w) = w1, ... 0w}, = wa)

—_—

emark 4.29. The above formula does not generalize well to infinite probability spaces. We
ill develop certain properties of FE,,, and then only use those properties going forward.

xample 4.30. If we represent () as a tree, F,, X can be computed by averaging over leaves.

emark 4%EnX is the “best approximation” of X given only the first n coin tosses.
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Proposition 4.32. The conditional expectation E, X defined by the above formula satisfies
B - . Lﬁj—c -
the following two properties:

ﬂ E,.X is an ]—" -measurable random Varlable (E X Ole/]? W'ﬂ A %“’“y,\ M
(2) For every A € ]:n, Z E,X(w Z X (w (Eim ’O%C%)

weA weA

Remark 4.33. This property is used to define conditional expectations in the continuous time
setting. It turns out that there is exactly one random variable that satisfies both the above
properties; and thus we define E,, X to be the unique random variable which satisfies both
the above properties.

Remark 4.34. Note, choosing A = ), we seﬁ lE¥(EnX) = FX.
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Proposition 4.35. (1) IfX Y are two random variables and o € R, then E (X +aY) =

NN —=
E,. X +aFE,Y. 1 —
(2) (Tower property) If m < n, then Ey(E,X) = EpX. < —
(3) I@ measurable, and Y Y is any random variable, then
A

BX O EX







Proposition 4.36. (1) If X is measurable with respect to ]:n, then E, X = X.

R

lan . ~

and {X € B} are independent.

P

(2) If X is independent of Fy, then B, X =
K
emark 4.37. We say X is independent of .7-" if for every A € F,, A e F, and B C R, the events A

‘\

Ezample 4.38. If X only depends on the (n+1)", (n+2)™, ..., pof" coin tosses and not the
15t 2nd . pth Coin tosses, then X is independent of F,,.
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Proposﬂslon 4.39 (Independence lemma). If X 1is independent of F, and Y is Fp-measurable,
and - R =R isa functzon then - A
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4.5. Martingales. Y

Definition 4.40. A stochastic process is a collection of random variables Xy, @ ..., XN.

—
—_—

Example 4.41. Typically )@is the wealth of an investor at time n, or .5, is the price of a
stock at time n.

Definition 4.42. A stochastic process is \adapted? if L)g& is &measurable for all n. (Non-
anticipating.)

Remark 4.43. Requiring processes to be adapted is fundamental to Finance. Intuitively,
being adapted forbids you from trading today based on tomorrows stock price. All processes
we consider (prices, wealth, trading strategies) will be adapted.

Ezample 4.44 (Money market). Let Yo = Yp(w) = a € R. Define Y,,11 = (1 +1)Y,. (Here r
is the interest rate.) — — = =
ESn (w) Wn+1 = 1 )

w

FExample 4.45 (Stock price). Let Sy € R. Define S, 11(w) = {
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Definition 4.46. We say an adapted process M is @ E Mn+ = % (Recall
E.Y =E(Y | F,).)

Remark 4.47. Intuition: A martingale is a “fair game”. ? oY~

FExample 4.48 (Unbiased random walk). If 51, L EN ar andw the n X, =

> _1 &k is a martingale.

——







Remark 4.49. It M is a martingale, then for every m < n, we must have

Remark 4.50. If M is a martingale then @n = FEM, = ]\_Z—[O_. %
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4.6. Change of measure.

e Gambling in a Casino: If it’s a martingale, then on average you won’t make or lose money.
e Stock market: Bank always pays interest! Not looking for a “break even” strategy.

e Mathematical tool that helps us price securities: Find a Risk Neutral Measure.

> Discounted stock price is (usually) not a martingale.
> Invent a “risk neutral measure” which the discounted stock price is a martingale.

> Securities mn\bemﬁfeﬁmking a conditional expectation with respect to the risk
neutral measure. (That’s the meaning of E,, in Proposition 4.1.)
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Definition 4.51. Let D,, = (1 +7)~" be the discount factor. (So D,$ in the bank at time
0 becomes 1§ in the bank at time n.) o

e Invent a new probability mass function
e Use a tilde to distinguish between the new, invented, probability measure and the old one.
> P the probability measure obtained from the PMF p (ie. P(A) = Zw eabw)).

> E E,, conditional expectation with respect to P (the new “risk neutral” coin)

Definition 4.52. We say P and P are E@ﬁ for every A A€ Fn, P(A) = 0 if and
only if if P(A) =0. —

Definition 4.53. A\@m an equivalent measure P under Wthht D, 5y is

a martingale. (L.&/\E,,(Dpq1Sn+11) = DpSn.y %97, > -
e :
Remark 4.54. U there are more than one risky assets, S*, , S *_then we require D, S},

, D, S* to all be martingales under the risk neutral measure P.
\

Remark 4.55/ Proposition 4.1 says that any security with payoff Vv at time IV has arbitrage
free price V| = DL_E\n(D ~Vn) at time n. (Called the risk neutral pricing formula.)
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Proposition 4.56. Let }'5 be an equivalent measure under which the coins are i.i.d. and
land heads with pmbabzlzty D1 and tails with probability q1 =1—ps.

(1) Under P we have E (Dpy1Sny1) = p1“+qldD S @—
(2) P s the risk neutml measure if and only wa = 1+r. (Explicitly p, = —I—T‘:ld}
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Theorem 4.57. Let X, represent the wealth of a portfolio at time n. The portfolio is

self- ' ortfoliojz:an only if\the discounted wealth D, X, is a martingale under the
risk neutral measure P. —

—_— ﬁ/\
Remark 4.58. Recall a portfolio is semwg if X, :@% +(1+r) (X, — ApSy)

for some adapted process A,,. - — B

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.

(2) All replication has to be done using self-financing portfolios.
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Theorem 4.57. Let X, represent the wealth of a portfolio at time n. The portfolio is
self-financing portfolw if and only if the discounted wealth D X, is a martingale under the
risk neutral measure P.

Remark 4.58. Recall a portfolio is self financing if hn_l,_l n)S'n_H +(1 + ) X @

for some adapted process A,.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.
(2) All replication has to be done using self-financing portfolios.
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Ezample 4.59. Consider two stocks S* and 52, u=2,d =1/2.
> The coin flips for S' are heads with proba:bility 90%, and tails with probability 10%.
[l> The coin flips for 52 are heads with probability‘ﬁand tails with probability 1%.
> Which stock do you like more? w
> Amongst a call option for the two stocks with strike K and maturlty N, which one will be
priced higher?

N> Qg |
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Remark 4.60. Even though the stock price changes according to a coin that flips heads with
probability p;, the arbitrage free price is computed using conditional expectations using the
risk neutral probability. So when computing E,, Vi, we use our new invented “risk neutral”
coin that flips heads with probability p; and tails with probability ;.

Concepts that will be generalized to continuous time.

e Probability measure: Lg&e_s%a& and not a finite sum. Same properties.
o@“iltration: Same intuition. No easy description.

e Conditional expectation: Same properties, no formula.
e Risk neutral measure: Formula for P is complicated (Girsanov theorem.)

e Everything still works because of of Theorem 4.57. Understanding why is harder.
"—\



5. Stochastic Processes @v’”w L EZ /\
5.1. Brownian motion. 3 A W)( GM)AX

) Dlscrete tnfge Simple Random Walk.
{i, where {;’s are i.i.d. E¢; = 0, and Range({;) = {£
— 3
o Contlnuous time: Brownian motion.
> Y =Xp,+ (t—n)épp1ift € [n,n+1).
> Rescale: Y = \fY}ﬁ (Chose +/¢ factor to ensure Var(YyF) ~ t.)

DLetZVﬂtfggn \2

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

> Named after Robert Brown (a botanist).
o . . . o . \— . .
> Definition is intuitive, but not as convenient to work with.
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(t=s)/e
—
. Ifg are multiples of e: Y7 — };SE ~ ﬁ Z & =% N(Q,E;ﬁ) (C[_ |

i=1
e V" — Y7 only uses coin tosses that arLe\“anter-%”/,kand so independent of Y.

Definition 5.2. Brownian motion is a continuous process such that:
&_ﬁ_ﬂ_ﬁ__}

(1) W= Wy~ N(Ot=5), -
{(2) Wi — Wy is independent of = M% %’vw %‘th%
| i e <




5.2. Sample space, measure, and filtration. L ‘ x
e Discrete time: Sample space Q —%wl, .. wN)l‘ (,D, = @}[ {‘ Corm “‘;Z
e View (wy,...,wn) as the traJectordeo walk.
e Continuous tlme Sample space Q = C([0,00)) (space of continuous functions).

> It’s infinite. No probability mass function!
ematically impossible to define P(A) for all A C .

éﬁ W

M»Lj%w

_\

7
\)'l M ~
L o




a o-algebra. (Closed countable under unlonmplements infersections.)

o Ps called a prob pro abzlzt measure on (.,/G)) if;
> P:G—10,1 —_\—%JTU) Q@“ Q«Q.V*\eg) ’POOC'«LO/@

° Pﬁ"sict our attention to@ subset of some sets A C €2, on which P can be defined.
>(G

> P(AUB) = T@.
> If A, € G, P(LIJ An) = lim P(A,).

e Random variables are measurable functions of the sample space:
> Require {X € A} € G for every “nice” A C R.
>Eg {X=1}€G, {X>5}e€G {X €34} €, ectc
> Recall {X € A} ={we Q| X(w) € A}

foes|ord = >0




e Expectation is a Lebesgue Integral: Notation EX = % XdP = / X(w
> No simple formula.

DIfX:ZailA,,thenEX:w) 0\ L,RZ 6% e >

1 we A
> 14 is the indicator function of A: 14(w) =

0 wegA
EX= 20 HX =)

Wasle e © EX = @
006§L

Y

i




g ek o gmb L
Proposition 5.3 (Useful properties of expectation). &L\m)f mj fl-

(1) (Linearity) . 8 € R, X,Y random variables, E(aX + fY) = aEX + SEY . /)\
(2) (Positivity) If X > 0 then EX > 0. If X >0 and EX = O then X =0 @m@

(3) (Layer Cake) If X >0 C’P(xfo) =1).

=3
(4) More generally, if ¢ is increasing, p(0) =0 then E&l: / ¢ (t) P(X > t)dt.

= (xz0) VO\,_7M
(5) (Unconscious Statistician Formula) If PDF of X is p, then Ef(X)= 3 f(z)p(x) de.
(og) /
T S’( %@ ok

£l = Vo 10 &




e Filtrations:

>
>
>

v

Discrete time:@: events described using the first n coin tosses.

Coin tosses doesn’t translate well to continuous time.

Discrete time try #2: F,, = events described using the trajectory of the SRW up to time
n. .

Continuous time: @: events described using the trajectory of the Brownian motiolm up
toti t. I -

Tt <t Ai CR then {Wy, € Ay, Wi e An} € Fy. (Need alllt; < )
As before: i then F C ft & %FM R :
Discrete time:” Fo = {0, Q} Continuous time: ={AeG|P(A)€{0,1}}.
7 =O§ SO
M\ w0 N

I

| " 1







5.3. Conditional exgg_e@t'&r_l[.
Notation E¢(X) ='E(X | F;) (read as conditional expectation of X given J)
No formula! But same intuition as discrete time. T
E: X (w) = “average of X over Ht(g)”, where II;(w) = {w’ € Q| w'(s) = w(s) Vs < t}.
Mathematically problematic: P(II;(w)) = 0 (but it still works out.)



Definition 5.4. E;X is the unique random variable such that: c %/ >
(1) EX is Fi-measurable. C}‘ey ¥ a Q\P\/ % K—;)zké Azﬁ T
(2) For everm E, X dP = / XdP Do H 7 E XD 31,@3
_ = o Timd -~
T i ‘ o (
Remark 5.5. Choosing A = Q implies E(E,X) :& _ 1—X(w>§r bo)
Proposition 5.6 (Useful properties of conditional expectation). wek

(1) If o, B € R are constants, X,Y, random variables Ei(aX + oY) = aE X + SE;Y.
(2) If X 20, then E; X > 0. Equality holds if and only if X = 0 almost surely.

(8) (Tower property) If 0 < s < t, then E,(E,X) = E,X.

(4) If X is F; measurable, and Y is any random variable, then E(XY) = X E;Y .

(5) If X is Fy measurable, then E:X = X (follows by choosing Y = 1 above).

(6) If'Y is independent of F;, then E;Y = EY.

Remark 5.7. These properties are exactly the same as in discrete time.



fut bae: LW,
Nt — .M.

@ |/\) NN c‘; )r/th%
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Definition 5.4. E,X is the unique random variable such that: <E

———
(1) EtX is Fi-measurable. M
For every L'ﬁ/ E: X dP = X dP

Remark 5.5. Choosing A &1mpl1gﬁ(EtX) EX_\

X1g) =1
of |x )

Proposition 5.6 (Useful properties of conditional expectation).
(1) If o, p € R are constants, X, Y, random variables E,(aX +aY) = aE,X + SE,Y.

(2) If X >0, then E;X > 0. Equality holds if and only zf&:ﬂglm\owi
(3) (Tower property) If 0 < s < t, then Ey(E;X) =
(4) If X is F; measurable, and Y is any J random vamable then’Ey(XY) = XE;Y.

(5) If X is F, measurable,  then EX = X (follows by choosing Y =1 above)
(6) If Y is mdepenaen’f of Fi, tth @

Remark 5.7. These properties are exactly the same as in discrete time.



Lemma 5.8 (Independence Lemma). If X is F; measumble,m, and
f = f(x,y): R? = R is any function, then —

BIXY) =o¥),  whee 9= BIXy).

Remark 5.9. is , then 1

{? — PDf 046 \/V .
E{%(Xﬂ) —_ 6\%;/ 2 Joone MM

RCORINE

R~



5.4. Martingales.

Definition 5.10. An adapted process M is a martingale if for every 0 < s < ¢, we have

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information
available today will not change your expected return.

Dicnde bime ; V\Aygo\%‘\b E M, =

mooa

Hepor > Y m<n, \E®M
J
¢

o e N

=W
?
<
§)jc < LO/ ‘)°>'

= (ﬂ®



Proposition 5.12. Brownian motion is a martingale.

Proof. N — EM
’\H@ é&v W\b g = %) F:'g I/\) - (/\)S

NJe =
Bl = E (-1, +1,)

- E (I'\))D”W6> /IL w&






6. Stochastic Integration (QWMWW QWJ\M N”h \5%1 QGD)
6.1. Motivation. a?’ {1»\,@ "3 W e g‘lMJk f{%\z
J

e Hold p; shares of a stock,with price St.
e Ounly trade at times P={0=t, < ..., t, =T}

o =

e Net gain/loss from changes in stock price: Z l;tj% where ApS = Sy, ., — Sy,
— b
L=y

n—1 T
e Trade continuously in time. Expect net gain/loss to be lim Z by, ARS = / by dS;.

[|P[|—0 0
o 1P = maxi(tips —tr). (N P o ek gu)— b
\.r\I O 1l

T
> Riemann-Stieltjes integral: ||1131||mo E bEkA-ki:/ by dSy,
—_—_— — 0
k=0

> The & € [tk, tr+1] can be chosen arbitrarily.
> Only works if the |first variation of S is finite. False for most stochastic processes.
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6.2. First Variation.

—

Definition 6.1. For any process X, define the first variation by

n—1
Vior)(X) = i ApX ] -
(X0 i, SIS i S

Remark 6.2. If X (t) is a differentiable function of ¢ then Vjo 71X < oo.
Proposition 6.3. E&[QT]W = 00

Remark 6.4. In fact, Vi mjW = oo almost surely. Brownian motion does not have finite first
variation. —— -

Remark 6.5. The Riemann-Stieltjes integral fOT by AW does not exist.
/_\ 1\_‘)
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6.3. Quadratic Variation.

Definition 6.6. If M is a continuous time adapted process, define

n—1 n—1

(M, M 1 M li ALM)?.
]@IIPII\IgOZ s = Muy)* = I\Pl\lrgoz%( eM)

—

Proposition 6.7. For continuous processes the following hold:

(1) Finite first variation implies the quadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.

WU el MB> tM)M}T: S (S
M @u S MM e e “‘L’M (g




Proposition 6.8. [W,W]r =T almost surely.
| -
Remark 6.9. For use in the proof: Var(N(0,02)?) = EN(0,0%)* — (EN(0,02)?)? :'@79.*
- °

Proof:. i \L
:évrﬂf QTAV
A A S N
O 4'0 %I ,{7’1. /{:rrv} T: ‘L “w
_ kT
Q* /EF T k/]F\{'//\«



(Wl s = T) .

L\M < L S
el @a[%mmﬂso ’
Q( N > V\)J?DO
@ e (2 e /’\ > O
1) = 7 ]
o=k 20w -1 (o ) - T)
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Proposition 6.10. W2 — [W, W], is a martingale.
[ -\

?%f Kot [wwlﬁ])c = ’E

> Nj*fb\))w]% = \A)t')“

}\ﬁ* M&”’ W’b’/k’ N W e w e
e NTS B (M) = M,
ie. NTS EQUJE/%) S



g lgueny —+)
Qw W)+ 2l (0, »B &
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w\%w\m>
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/

Theorem 6.11. Let M be a continuous martingale.
(1) EM} < oo if and only if E[M, M¥ <
(2) In this case M? — [M, M] is a continuous martingale.
(8) Conversely, zf M — At is a martingale for any continuous, increasing process A
such that Ag = ( 0, then we must have Ay = [M, M];. -

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.
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Theorem 6.11. Let M be a continuous martingale.
(1) EM? < oo if and only if E[M,M]; < .
(2) In thzs case M7 — [M, M]; is a continuous martingale.
(8) Conversely, zf M; w a martingale for any continuous, increasing process A
such that Ay =70, 0, then we must have A, = [M, M];.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.



Remark 6.13. If X has finite first variation, then | X1 — X¢| = O(dt).
Remark 6.14. If X has finite quadratic variation, then | X1 — X¢| & O(\/ﬁb > O(dt).
- =

bk o Wbl b




6.4. Itd Integrals F——' + { —- 5 (
o D= D!t! some‘@gg process (position on an asset) 0.%0 + 4 T +
_.Ja,—%—\_“ et

e P={0=1tp <t <---} increasing sequence of times. - N

L] H__ﬂ = max; ti+1 — t> and AZX = Xti+1 — th..

« W: standaur1 Brownian motion.

n— r/—v\ﬁ
e Ip(z)dzef AW+Dt (WT—Wt) E [‘ >
1o S0 o o € b, %,
Definition 6.15. The It6 Integral of D with respect to Brownian motion is defined by
T ’\/\\““I
AW

— Ir= DydW, = lim Ip(T) O% NWL LQCW
= 0

o = [P0 N @J
Remark 6.16. Suppose for simplicity T = t,,. i

+
(1) Riemann integrals: lim Z DgAiW exists, for an € [tiytip1]- {%agg
IlPl— AR

(2) Itd integrals: Need &; = t for the limit to exist.

2 Nad P h Lo adoilel
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Theorem 6.17. IfE D2 dt < oo ag., then: g > &w
(1) IT = lim Ip(T) exists a.s., and Ek < 0. "[T - 4

it £ 2

—>(2) \The process It Jis a martingale: Esly = E / D, dW, = / D,.dW, = I,

>(3) ][T_/ D} dt a.s. C/\Me 3}9 O\'h N Q(Jz P'U’W ,WJL\>

T
Remark 6.18. If we only had / D? dt < 0o a.s., then I(T) = lim Ip(T) still exists, and

— [IP|=0

is finite a.s. But it may not bmmgale (it’s a local martingale).
|

2 A
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Corollary 6.19 (It isometry). / Dy th —E/ D2 dt — g £ D 0\/&

Proof. O

@ I‘\uq fs. RQM"‘“ ifm)g”ﬂ's
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0 [Pl-0

= rf%j iy 1)
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Intuition for Theorem 6.17 (2). Check Ip(T') is a martingale.
N
U

(D) - % P, a0 v (W~ w&» LTew
NS E, T P(fg) = (9
‘Cﬁv é’M{Mj 4%0( S-'*Ew\ 9 - {4« LN
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Proposition 6.20. If o,a € R, D, D adapted processes

T _ T T
/ (qps + @DS) AWy = a/ Dy dW, + d/ D, dW,
0 - 0 0

Ty, T Tyl

Proposition 6.21. Dy, dW, + D,dW, — D &\,\)

o T ° e
Question 6.22. ]fD 0, then must fo Dy dW; > 02 &— ﬁ\g@l

i L\f“ PR
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6.5. Semi-martingales and It6 Processes.

t
Question 6.23. What is / WedW,?
0

..



Definition 6.24. A is a process of the form X = XO + B + M where:

> X is Fo-measurable (typically Xj is constant).

> Bis an adapted process with finite first varlatlon @LK BOMM \]MW% M)
———————
> M is a martingale.

Definition 6.25. An It6-process is a semi-martingale X = X ++ M, where:

D\%:/Otf’:sds’ with /0t|b5ds<oo CSM vaw cmﬂl}> — igjo”f (% OHD
> ]\it:/otosdws’ with /0t|08|2d5<oo (:(:/o ‘,”C}> —> AM%: V’b Ml\){7

Remark 6.26. Short hand notation for It6 processes: dX; = b; dt + oy dW;.
Remark 6.27. Expressing X = Xo+B+M (or dX = bdt+o dW) is called the semi-martingale

decomposition or the of X.
E——N



Theorem 6.28 (It6 formula). If f € C12, then

df@v‘éﬁ) :a

t
N~

\ 1 ‘
f(t, Xe)dt + 0, f (£, Xy) dXy + 507 f (1, Xy) d[ X, X

- - 2= —
Remark 6.29. This is the main tool we will use going forward. We will refurn and study it
thoroughly after understanding all the notions involved.




Proposition 6.30. If X = X, + B + @ then [X, X] = [M, M].



Proposition 6.31 (Uniqueness). The [t6 decomposition is unique. That is, if X = Xo +
B+M=Yy,+C+N, with:

> B, C bounded variation, By = Cy =0

> M, N martingale, My = Ny = 0.

Then Xg =Yy, B=C and M = N.



Wl
Deﬁnitiﬁn 6.24. A semi-martingale is a process of the for Xo + B+ M where:

> Xg is Fo-measurable (typically X, is constant).
> B is an adapted process with finite first varlatlon (W W,J’)q&
> M is a martingale.

Definition 6.25. An [to-process is a semi-martingale X = X + B + M where:
ﬁ_‘g

>B>t=/b ds, w1th/\b\ds<oo (Fionan Jmﬂ
1>Mt—/oSdWs,Wlth/|as|2ds<oo ;&3 m%) 4P /&

Remark 6.26. Short hand notation for It6 processes: d.X; —\l{t_flf + o th

Remark 6.27. Expressing X = Xo+B+M (or dX = bdt+o dW) is called the semi-martingale
decomposition or the Ito decomposition of X.



Theorem 6.28 (It6 formula). If f € C12, then

/ NS
{[ df(t, X)) = D, f(t Xt.w £t Xt %8§f'(t,XL)d[X7X]L
L’_/J

Remark 6.29. This is the main tool we will use going forward. We will return and study it
thoroughly after understanding all the notions involved.

Mo b




Proposition 6.30. If X = X, + M, then [X, X] = [M, M].

(M 2w b o) o ,

N O{IM: ' v dW J(Lw\ M{?D/: Jrgi‘é&_l,)g
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% A = b (k)
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Proposition 6.31 (Uniqueness). The [t6 decomposition is unique. That is, if X = Xo +

B+M Y0+C+N with:

l> B, C’ bounded vamatwn By=Cy=0
> M N martingale, My = Ny = 0.

Then Xo =Yy, B=C and M = N.
b O M t-0, M-n-0, %
> ¥,
@K««m B = C 4 N
S B¢ = -

-
<&

A\

CD






( )
Corollary 6.32. Let dX; :+ oy AW, with Efot bsds < oo and Efot 02ds < co. Then

X is a martingale if and only if b = 0.

S\
)&; Xt o4 Cff X,)
- Xo ' T(’c"lc" N g I, N

0 (]

U“Myfw = S[@JS -0 VL & xf X, + iwﬁwi <=7L=O>

(T/é)(mamﬁ)’mw Ma



T T T
Definition 6.33. If dX = bdt +\a dWi define / D;dX; = / D;b; dt + / Doy dW;.
o e 0 v~ g W 0

e~
T T
Remark 6.34. Note w dt is a [Riemann integral,| and Doy dWy is a It6 integral.
0 0




6.6. Itd’s formula.

Remark 6.35. If f and X are differentiable, then
df (t, Xi) = Opf(t, X¢) dt + 0. f(t, Xy) d Xy

A A .

Nt x = 1(4) ) o”& JQA
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ﬂb "Dmujm
Theorem (It6’s formula, Theorem 6.28). If|f € C*%/ then

—~—~

df(t,X,) = O f (8, X,) dt + D, f (1, X,) dX;
— — SN
Remark 6.36. If dX; = by dt + oy dW; then
At = 0t @ 7t AVt

|
'(‘h
S
S
DO |[ =
<+ oo

ec” — [~ e 0]« dh
@% S ﬁn’«g k@ m L.
y >jc = J‘G)) XQ S s %wm‘s.
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Intuition behind Ito’s formula?
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Ezample 6.37. @
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Example 6.38. |Find / Weaw,\ — Al & ol
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Ezample 6.39. Let My = Wy, and N; =

> We know M, N are martlngales
> Is M N a martingale?
(N

W2 —t.
L.\,\JJ
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O3 | - dfdu)

@axlg-’ 3)}"{7
® 7 - by = 0 4 % o+ 0l AW+ %ol%
O Al ==&+ [au-E)dw by, K
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Ezample 6.40. Let X; = tsin(W;). Is X? — [X, X]; a martingale?

éww o (x ¢ Wl n@
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7. Review Problems W #"l BM £ l,\\q_ = O
Problem 7.1. If 0 < r < s < t, find E(W,W,) and LE(WTWSWt). N
R )

EU/\)SW&> = ‘3’\Jﬁ (WMQ%JC%>
T doer /&lﬂ
(b Bluwy= e on,) -r(UEW,)

— E((/Jﬁ NQ = (\L‘){\’ N(D/Qj









= E KKA)T (Nﬁ» +g>> (‘szé e M@

— E L\)i Y E\/\)TQQ-W‘> :D



Problem 7.2. Define the processes X,Y, Z by
2 Fﬂ’_\‘
X = e % ds, Y;= exp( W, QS) , Iy = tth
0 =~ L Mo T/ — D
Decompose each of these processes as the sum of a martingale and a process of finite first
variation. What is the quadratic variation of each of these processes?
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Problem 7.3. Define the processes X,Y by r—----\,

def def DAJ\M
X = / Wsds, Yy = / WsdWs . (//

Given 0 ;j;l t, compute EX,, fYt .E Y;. (E "QQ %>
@EJNQ:M :EU’\);"{Q
0

R

Cpan ad
Eg%:ge Jk

= 0
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Problem 7.4. Let M, :/@@ Find a function f such that

e p[y) /f s, Ws)d
a martin gﬁj L_f
jQ“ L) — < : W>°{g>
- ) %cj -« D (- “Q>
Oy = o )1
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Problem 7.5. Suppose o = 1s a determlmstlc (i.e. non-random) process, and M is a
martingale such that d M 2 —
g [ ((glj D = O

(1) Given \,s,t € R with 0 < s < t compute( Ee*"? and E erM:—Ms
(2) If r < s compute|E exp(AM,. + u(Mt
(3) What is the Jomt distributio
(4)
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Problem 7.6. Define the process X,Y by
t t
— X:/gdl/Vs, Y= [ Wsds.
0 = 0= -
Find a formula for EX} and EY;” for any n € N.
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. Black Scholes Merton equation

Cash: simple interest ra‘@@n a bank.

Lbe small. Cp a¢ be cash in bank at time n At. (M € N

Withdraw at time n At and immediately re-deposit: C,11ya¢ = (1 + 71 At)Cpas.
> L=, —

Set t = nAt, send At — 0: and C,=Cy e ~—

r is called the continuously compounded interest rate.

Alternately: If a bank pays interest rate p after time 7', thep’the equivalent continuously
compounded interest rate IS@— 1 In(1+ p).

s ™ ot~ Dl
> (

ot ™% vl Gl g
0 e o ) R




e Stock price: SHAt (1 —l—UAt S + @ C K - MQ&/M '\'?:}M 4\-\4&>
> Variance of noise should be proportiona to
T
> Variance of noise should be proportlonal to

o Sitnat— S —O;St At + g5, (AWY).
o2 TN

Definition 8.1. A |Geometric Brownian motion(with parameters «, o is defined by:

dSt = OZ»St Cz + (_J'St@
e TS
: Mean return rate (or percentage drift)
volatility (or percentage volatility)
S k_m/*
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Market Assumptions. (/ %g%" ol Q/{/ ou’ i TQ’A Olw—{;

+ |1 stock{ Price(S;) modelled by GBM(a, 7).

o Money market: Continuously compounded interest rate@
> C; = cash at time t = goejt. (Or 0,Cy = 7:9\)
> Borrowing and lending rate are both r.

o Frictionless (no transaction costs)

o Liquid (fractional quantities can be traded)



|

Consider a security that pays Vp :m‘c maturity time 7.

Theorem 8.3. If the security can be replicated, and f =
wealth of the replicating portfolio is given by Xt

jOV

—~9fL\ g~<)6
S(T0) =

(8.3)

Theorem 8.4. Conwversely, if
Xy

2 2

Ouf +rzd.f + 75‘

Lo —rf=0
—r(T—t)
g(x)

f(t,St), then:

f(t,) is a function such that the

x>0,
t<T, (Rowsolv wﬂic@
A G

satisfies (8.1)—(8.3) then the security can be replicated, and
= f(t,St) is the wealth of the replicating portfolio at any time t <T.

Remark 8.5. |Wealth of replicating portfolig equals the \@@

Remark 8.6. g(x) =
Remark 8.7. g(x) =

=

-K )T is a European call with strike K and maturity 7.
(K — )" is a European put with strike K and maturity 7.



Proposition 8.8. A standard change of variables gives explicit solution to (8.1)—(8.3):
2 e‘yz/Qdy

(8.4) &—E):/_OO ?_:TTi(@eXP((T—%)I-FQ\ﬁy))W,

oo

Corollary 8.9. For European calls, g(xz) = (x — K)%, and
—

(8.5) f(t,x) = cft,x) = aN(dy (T — t,2)) — Ke " =N (d (T — t,2))
where - %
aer 1 T o2 T= 1=
(8.6) do(r,7) UIL(ln(K) + (v E>l> ,
and
def 1 v _y2 2
(8.7) N(z) = \/727/_006 Py, = FQ\)(T)/I><%>

is the CDF of a standard normal variable.



Remark 8.10. Equation (8.1) is called a\;artz’al differential equation.\ In order to have a

unique solution it needs: Ny -
(1) A terminal condition (this is equation (8.3)), E
(2) A boundary condition at z = 0 (this is equation (8.2)),
(3) A boundary condition at infinity (not discussed yet).
> For put options, g(z) = (K — z)™, the boundary condition at infinity is
Jim f(t.a) =o0.
> For call options, g(z) = (z — K)™, the boundar ition at infinity is

Il =G KT =0 o {fe9) oK) wrTw
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Proof of Theorem 8.5. ., )Qt = el )}@ E,% %
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Proof of Theorem 8.4. _
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Proof of Theorem 8.4 (without discounting).

WX - %(o Q>
® 8, 3l 4) (Db Hodgo)
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Remark 8.12. The arbitrage free price does not \depend on the mean return rate!
e
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Question 8.13. Consider a European call with maturity T and strike K. The payoff is
Vi = (St — K)*. Our proof shows that the arbitrage free price at time t < T is given by
Vi = c(t, St), where c is defined by (8.5). The proof uses Itd’s formula, which requires ¢ to be
twice differentiable in x; but this is clearly false at t = T. Is the proof still correct?
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Proposition 8.14 (Put call parity). Consider a European put and European call with the

same strike K and maturity T -

> c(t, Si) = AFP of call (given by (é_’{)/))

> p(t,St) = AFP of put.

Then c(t,z) — p(t,x) = — Ke " T=Y  and hence p(t,z) = Ke "T=) — x — ¢(t, x).
~

- —
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8.3. The Greeks. Let c(t,z) be the arbitrage free price of a European call with maturity T
and strike K when the spot price is x. Recall

c(t,z) = N(dy) — Ke""N(d_), do L(ln(%) + (r + 12)7) , =Tt

o\T 2
Definition 8.15. The Eeltagis OxcC.

Remark 8.16 (Delta hedging rule). ‘At = 0,c(t, Sy).
Proposition 8.17. 9,¢ = N(d,)

he =9 Q;L 7\)(‘&) -~y (4,33
= M(Oﬂ) + ’\)/MQ' &; o k{w /(o"> &i
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; 1 —d
Definition 8.18. The (Gamma is|0%c and is given by 92c = 5 exp( 2+) .
- T

Definition 8.19. The(Theta ‘15 dic, and is given by atc = —rKe‘”//) %N’ d+

1
%\c = 9/\ OKC °€>> “Q o\




hdly

Proposition 8.20. (1) ¢ zs,\mcreasmg as a function of x.
2) c is convex as a function of x.

(3) ¢ is decreasing as a function of t.
@ C o a5, <(/'/\ c/L P WKL C(’L A> > C—(JD )Oi

(ﬂﬁ" >0 > Cig ime ngi;‘h’w"“ qo
d

: T
3)\6 N (‘t) > D " 13 \\



—_

ve. Ta

Lk

Je, ¢ WXH@\LM

ng?

“o\ic >O7.






Remark 8.21. ‘To roperly hedge a short call, you always borrow from the bank. Moreover
ATzlifST>K, Ar =0if St < K.

D&Ho\ Hu{m c QJC: ﬁﬂ" @Lw;g [N qz&Jr %«*"* (DJ J‘WL J\T
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Remark 8.22 (Delta neutral, Long Gamma). Say xg is the spot price at time ¢

o Short 0,c(t, xo) shares, and buy one call option valued at ¢(t, o)
o Put M = 200,c(t, 20) — c(t, o) in the bank.
« What is tmﬁ value when if the stock price is

> (Delta neutral) Portfolio value|= c(t, z) — tangent line

and we hold our position)?
> W} y convexity; portfolio value i3

3ys non-negative.
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9. Multi-dimensional It6 calculus {"

4,
¢ I AN \ \ il L_/bt
OH—VF\ IR R
e Let X and Y be two Itd processes. T
o P={0=t1 <ty <tn, =T} is a partition of [0, 7. ‘\\ _[,) /E>
Definition 9.1. The joint quadratic variation of X, Y, is defined by
n—1
X,Y]r= 1l Xi, — XY, ) e 2O
X, ¥l ||P1|frio§(fﬁiw e ZQ S

”P]] sp
Remark 9.2. The joint quadratic variation is sometimes written as d[X,Y]; = dX; dY;

W A
S0 D) = A 2(ag)
\\jjl""@ RNy

AJKX ) X%m—‘ ><‘E(



Lemma 9.3. [X, Y]y =1([X+Y, X +Y]r - [X -Y, X - Y]r)
\}\\-’ - m\) B

Qad QV B AT WX’7
sy

Fjo:' (W(f)z ’( b)l = b~ \r

el CORTL]
e
: [ Y1 gl WW] v, 57))



Proposition 9.4 (Product rule). d(XY); = X;dY; + YidX; —|—
V\/\_/ |

T L— vl | AN
kT e Y %&QX&:X%*%/

> lXy) = xdy ¢ v oy
T[T ol JWQ (vt )
060 = xay + 7 x4 4y
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Proposition 9.5. Say X,Y are two semi-martingales.

o Write X = Xo + B+ M, where B has bounded variation and M is a martingale.
o WriteY =Yy +C + N, where C has bounded variation and N is a martingale.
e Then d[X,Y]: = [M N]

Remark 9.6. Recall, all processes are implicitly assumed to be@l and |continuous. )
B 0n= ¢ (bpor) = v,y

e = + ¥ S - -

% / 4<xm7 K7 K=Y

i MR Mw} — U/\ N, M- m]> “ B {m){
Aeﬂsw J%&V)
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Corollary 9.7. IfX is a semi-martingale and B has bounded variation then [X B] =0.



Notation. —
o d-dimensional vectors: Write = (x1,...,24) € I}Rﬁ. p
e d-dimensional [@@ X = (Xy,...,Xyg), where eac a random variable.
o d-dimensional stochastic processes: X; = ()@d ., X@), where-each X} is a stochastic
process. o '
> For scalars (or random variables): X< denotes the i-th power of X.
> For vectors (or random random vectors): X’ denotes the i-th coordinate of X.
> There is o ambiguity (can’t take powers of vectors, or coordinates of scalars)
o Alternate notation used in many books: Use X (¢) for the d-dimensional stochastic process,

and X;(t) for the i-th coordinate.
¢ May sometimes write X = (X*,..., X?) for random vectors, instead of (X1,..., Xq).

—> (e ‘MJL
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Remark 9.8

(Chain rule). [If X is a\differentiable function of ¢, then
—_— d

d(f(t, X)) = Ouf (L, Xy) dt + Z 0 f(t, X;) dX;

- i=1

Remark 9.9 (Notation). 9,f = %L,

‘(§ - %@5 2 e P{k
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Theorem 9.10 (Multi-dimensional 1t6 formula).

e Let X be a d-dimensional 16 process. Xy = (X ..., X9,
o Let f f(t,z) be a function that’s deﬁned fort €1 R x € Rd
e Suppose f € CY2. That is:

> f is ance differentiable i

> f is tﬁcé in each coordinate x; (sm,lwl«g 3 ; %) [

> All the above partial derwatwes are continuous. T en: QYJWX '

W atf(tXt dt+zaftXt YdX! + Zaaftxt)w

L N A
o R Tl &Y




Remark 9.11 (Integral form of Itd’s formula).
F(T, X1) — £(0,X0) = /6tftXtdt+Z/@ftXt ) dxXP
+ = Z ad F(t, Xy) d[X7, X7,

Remark 9.12. As with the 1D It6, will drop the arguments Et/\? Remember they are there.

T
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Intuition behind Theorem 9.10.
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T
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To use the d-dimensional It6 formula, we need to|\compute joint quadratic variations.

Proposition 9.13. Let M, N be continuous martingales, with Ei/[f < o0 and EN}? < 0.

(1) MN — [M,N] is also a continuous martingale.

(2) Conversmw— B is a continuous martingale for some continuous adapted,
bounded variation process B with By = 0, then
Proof.
© "((’L’\)'QM,N}> = A s i — (e

=My + Nim

Mﬂ Mj






Proposition 9.14. (1) (Symmetry) [X,Y] = [Y, X]
(2) (Bi-linearity) If@ R, X,Y, Z are semi-martingales, [X,Y +aZ] = [X,Y]+a[X, Z].
Proof.

Jpd WV k) \/+o<%j _ Qm z(AT)Q(A[(7+M%>>
T I

Pl=0

= J&M 2 LRAT ¥ 0‘2(&(>® &&“@
IPl>0

- [x/y]T b MV)%]T ,



Proposition 9.15. Let M, N be two martingales, o, T two adapted processes.

t -
el

t
o Let Xt / s dM and Yt / Ts dN
Remark 9.16. Alternately, 1f\dXt = o dM; and[dY} = 7: dN¢| then d[X,Y]s = oy d[M, N]s.

e Then W&—ﬁmﬁ@% [Wj
el I, =,

> Xl/ = JL‘M 2 V. 4M Ak = XJU[H- XJV»\
A0






Propo V7. If M, N are kontinuous martingalesk EM? < 0, EN? < 0o and M.N

are {independent, then M N]=0.
Remark 9.18 ( Warnlng Independence implies E(M;N;) = EM;EN,. But it does not imply

E (MNy) = E.M;E,N,. So you can’t use this to show MN is a martingale, and hence
conclude [M, N| = 0 W 4_2  FALE
Correct proof. QM »l{’\) 5> P M a\T
|Rovey, 7 s
> M

KNQX%ML\ 'ﬁc\Mﬁ f@>MN} 0O
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Remark 9.19. [M, N] = 0 does not imply M, N are independent. For example:

CJZ (W <03 o (Al = “‘07} ‘{u>®§
N ﬂ 0\ = D X&
b S@ 0, 0] \/05
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Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W1, ...,W4) is a Brownian motion if:

(1) Each coordinate W* is a standard 1-dimensional Brownian motion.

(2) For i # j, the processes Wt and W7 are independent.

- dt i=j,
Remark 9.21. If W is a d-dimensional Brownian motion then|d[W*, W], = {(;:lt » ]
L——\~_/£ U ai 1 ]




Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.
S a i=j,
(2) The joint quadratic variation satisfies: d(W*, W], = { .,
— Odt i#7j.
Then M 1is a d-dimensional Brownian motion.

Proof. Find Ese’\Mti"’“Mtj using It6’s formula, similar to Problem 7.5.



Ezample 9.23. Let f € C12 W be a d-dimensional Brownian motion, and set X; = f (¢, W;).
Find the Itdé decomposition of X.



Question 9.24. Let W be a 2-dimensional Brownian motion. Let X; = In(|W;]?) =
In((WhH)?2 + (W2)?). Is X a martingale?



10. Risk Neutral Pricing

Goal.

e Consider a market with a bank and one stock.

e The interest rate R, is some adapted process.

o The stock price satisfies dS; = a4 Sy dt + 0+S; dW;. (Here «, o are adapted processes).
¢ Find the risk neutral measure and use it to price securities.

Definition 10.1. Let D; = exp(— fot R ds) be the discount factor.

Remark 10.2. Note ;D = —R;D;.
Remark 10.3. D, dollars in the bank at time 0 becomes $1 in the bank at time ¢.



Theorem 10.4. The (unique) risk neutral measure is given by dP = Zp dP, where

T T .
ZT:exp<—/ 9tth—%/ 0t2dt)7 at:M
0 0

Ot

Theorem 10.5. Any security can be replicated. If a security pays Vi at time T, then the

arbitrage free price at time t is
1 -~
Vi=—FE,(DpVyp).
= - Bi(DrVr)
Remark 10.6. We will explain the notation dP = Zp dP and prove both the above theorems
later.



Definition 10.7. We say P is a risk neutral measure if:
(1) Pis equivalent to P (i.e. P(A) =0 if and only if P(A) = 0)
(2) D.S; is a P martingale.
Remark 10.8. As before, if P is a new measure, we use E to denote expectations with respect
to P and E; to denote conditional expectations.
Ezxzample 10.9. Fix T > 0. Let Z7 be a Fpr-measurable random variable.
e Assume Zr >0 and EZr = 1.

o Define P(A):E(ZTlA):/ Zp dP.
A

o+ Can check EX = E(ZrX). That is / XdP = | X ZpdP.
Q Q

« Notation: Write dP = Zy dP.
Lemma 10.10. Let Z, = E,Zr. If X, is Fi-measurable, then E;X = Z%ES(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem in part 2 of this course. [



Theorem 10.11 (Cameron, Martin, Girsanov). Fiz T > 0, and define:
e by = (b},...,b%) a d-dimensional adapted process.

e W a d-dimensional Brownian motion.

o Wy =W+ [} byds (i.e. AW, = by dt + dW, ).

e dP = Zy dP, where

t 1 st
Zy = exp(—/ by - dW, — 5/ |bs|2ds) )
0 0

If Z is a martingale, then P is an equivalent measure under which W is a Brownian motion
up to time T
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Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W1, ...,W9) is a Brownian motion if: I =
(1) Each coordinate is a standard 1-dimensional Brownian motion.
(2) For i # j, the processes Ii/'i and W7 are independent.

Remark 9.21. If W is a d-dimensional Brownian motion then
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Theorem 9.22 (Lévy). Let M be aId-dimensional process| such that:
(1) M is a@martmga e [
MW/M_] dt  i=j,
(2) The joint quadratic variation satisfies: d[W", W', = {Odt ; 7&] ‘

Then M is a d-dimensional Brownian motion.

Proof. Find Ese’\Mti"’“Mt’ using It6’s formula, similar to Problem 7.5. (WA/LQ\/\/ O
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Ezample 9.23. Let f € C12 W be a d-dimensional Brownian motion, and set X; = f (¢, W;).
Find the Itdé decomposition of X.

(Mole ()



Question 9.24. Let W be a 2-dimensional Brownian motion. Let X; = In(|W;]?) =
In((WhH)?2 + (W2)?). Is X a martingale?

(L)



. Risk Neutral Pricin ©
o j G- )R 4’>

o Consider a market with a bank and one stock. CL\ L 2C = R C
e The interest rate is some adapted process. process. & L " ﬁw 23 + Tk
o The stock price satisfies dSt St dt +t dW;. (Here a, o are adapted processes).
. FWQ&SUTG and use it To price securities.

Definition 10.1. Let D; = exp(— fo R, ds) be the discount factor.
Remark 10.2. Note 0;D = —RyDy.

Remark 10.3.ollars in the bank at time 0 become@in the bank at time ;



Theorem 10.4. The (unique) risk neutral measure zr;lven by dP = Zp dP, where

T 1 N
. ZT:exp<—/ Qtth_i/ efdt), &
0 0

Gt = 7t =
Ot

Theorem 10.5. Any security can be replicated. If a security pays Vr at time T', then the

arbitrage free price at time t_is T

1
— Vi=p B E,(DrVy) = E, exp/ Rds)VT))

Remark 10.6. We will explain thé notation dP = Z7 dP and prove both the above theorems
later.

Cone [ ﬂx‘wﬁw Lol ed]



Definition 10.7. We say P is a risk neutral measure if:
(1) Pis equivalent to P (i.e. P(A) =0 if and only if P(A) = 0)
—(2) DyS; is a P martingale.
Remark 10.%. As before, i a new measure, we use@o denote expectations with respect

to P and to denote conditional expectations.
FEzxzample 10.9. Fix T > 0. Let g::g be a Fr- measurable random varlable
o Assume/ZT > O}and EZr=1. (%z >0 = ?(4>>O = p Q\) -~ O}
e Define P(A) = E(Zr14) = | ZpdP. ~
P =B = [ ZP (g2 ST, ez -6 7o)

« Can check EX = E(ZrX). That 15/XQE:/XZTCZP
Q” b—=4

« Notation: Write|dP = ZrdP
Lemma 10.10. Let Z; = EyZr. If Xy is Fy-measurable, then\ENS)i: Z%ES(ZJXt)'

T
Proof. You will see this in the proof of the Girsanov theorem. g



Theorem 10.11 (Cameron, Martin, Girsanov). Fiz T > 0, and define:
b= (b},...,b¢) a d-dimensional adapted process.

e W a d-dimensional Brownian motion.

’Wt Wt+f0b ds (ze th—btdt+dW) C@‘(: g %ng

. dP ZTdP where

—

Zt = exp / bs dW |bs|2ds) .
0
[If Z is a martingale, thes an equivalent measure under whic)@s a Brownian motion
up to time T'.
Remark 10.12. Note Wt is a vector.
(1) So Wt Wt+fgb ds meansW Wl—l-fo bl ds, for each i € {1,. }
(2) Similarly, dW; = by dt + dW; means dW; = bi dt + dW} for each i € {1 ,d}.

Remark 10.13. fo bs - dWs means fo bt dW? (dot product).

zls.ws
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Proposition 10.14. dZ, :\—VZ\;\I% - dWy. Explicimcfﬁatﬁdzt =—7 Z bi thi_

=1

Question 10.15. Looks like Z is a martingale. r/!/hy did we assume it in Theorem 10.117
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Idea behind the proof of Theorem 10.11.
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Theorem (Theorem 10.4). The (unique) risk neutral measure is given by dP = Zp dP,
where - '

oy — Ry

T 1 [T )
Zp = — Oy dWy — = 07 dt 0, =
~—p 4T exp( /0 %3 W 2/0 Ut ,)’ t o,

Proof of Theorem 10.4.
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Theorem 10.16. X, represents the wealth of a self-financing portfolio if and only if DtXt
is a &n@wgale

{tRemark 10.17. The proof of the backward direction requires the martingale representation
heorem, and is outlined on your homework.

Remark 10.18. This is the analog of\Theorem 457 \=— St WQ‘*'U( %?'/ Z\mm
Proof of the forward direction. - B
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Theorem (Theorem 10.5). Any security can be replicated. If a security pays VT at time T,
then the arbitrage free price at time t is

Zt = DitEt(DTVT) =E, (exp (/tT —R, ds) VT)) .

Remark 10.19. This is the analog of \Proposition 4.1. &V%/W 0

Proof of Theorem 10.5.
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11. Black Scholes Formula revisited

 Suppose the interest rate By = r (is constant in time).
o Suppose the price of the stock is a GBM(q, o) (both «, o are constant in time).
— 7 A

Theorem 11.1. Consider a security that pays Vp = g S&aturzty time T'. The arbitrage

free price of this security at any time L < T is given by ft, Sy), where

0 sep= [ egleonl((- G SEY. emres

Remark 11.2. This proves Proposition 8.8.
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Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a European call with
strike K and maturity T s given by:

(8.5) c(t,x) = zN(d (T —t,z)) — Ke "T"ION(d_(T —t,z))
where

X 0’2
T L IR G R R NI
and ’

is the CDF of a standard normal variable.

x & \ .
(8'7) N(:E) d:ef\/lgr 7ooefy2/2dy7 \&%“/\%LLX
(Vo /ILM [

Remark 11.4. This proves Corollary 8.9.



