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1. Preface.
These are the slides I used while teaching this course in Fall 2021. I projected them

(spaced out) in class, and filled in the proofs by writing over them. The annotated version of
these slides with handwritten proofs, blank slides (so you take notes), and the compactified
un-annotated version for quick review can be found on the class website. The LATEXsource of
these slides is also available on git.

























































4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n � N . We define E(X | Fn) = EnX
to be the random variable given by

EnX(ω) =
�

xi∈Range(X)

xiP (X = xi | Πn(ω))

where Πn(ω) = {ω� ∈ Ω | ω�
1 = ω1, . . . , ω�

n = ωn}
Remark 4.29. The above formula does not generalize well to infinite probability spaces. We
will develop certain properties of En, and then only use those properties going forward.

Example 4.30. If we represent Ω as a tree, EnX can be computed by averaging over leaves.

Remark 4.31. EnX is the “best approximation” of X given only the first n coin tosses.





Proposition 4.32. The conditional expectation EnX defined by the above formula satisfies
the following two properties:

(1) EnX is an Fn-measurable random variable.
(2) For every A ∈ Fn,

�

ω∈A

EnX(ω)p(ω) =
�

ω∈A

X(ω)p(ω).

Remark 4.33. This property is used to define conditional expectations in the continuous time
setting. It turns out that there is exactly one random variable that satisfies both the above
properties; and thus we define EnX to be the unique random variable which satisfies both
the above properties.

Remark 4.34. Note, choosing A = Ω, we see E(EnX) = EX.



Proposition 4.35. (1) If X, Y are two random variables and α ∈ R, then En(X + αY ) =
EnX + αEnY .

(2) (Tower property) If m � n, then Em(EnX) = EmX.
(3) If X is Fn measurable, and Y is any random variable, then En(XY ) = XEnY .





Proposition 4.36. (1) If X is measurable with respect to Fn, then EnX = X.
(2) If X is independent of Fn then EnX = EX.

Remark 4.37. We say X is independent of Fn if for every A ∈ Fn and B ⊆ R, the events A
and {X ∈ B} are independent.

Example 4.38. If X only depends on the (n + 1)th, (n + 2)th, . . . , nth coin tosses and not the
1st, 2nd, . . . , nth coin tosses, then X is independent of Fn.



Proposition 4.39 (Independence lemma). If X is independent of Fn and Y is Fn-measurable,
and f : R → R is a function then

Enf(X, Y ) =
m�

i=1
f(xi, Y )P (X = xi) , where {x1, . . . , xm} = X(Ω) .



4.5. Martingales.

Definition 4.40. A stochastic process is a collection of random variables X0, X1, . . . , XN .

Example 4.41. Typically Xn is the wealth of an investor at time n, or Sn is the price of a
stock at time n.

Definition 4.42. A stochastic process is adapted if Xn is Fn-measurable for all n. (Non-
anticipating.)

Remark 4.43. Requiring processes to be adapted is fundamental to Finance. Intuitively,
being adapted forbids you from trading today based on tomorrows stock price. All processes
we consider (prices, wealth, trading strategies) will be adapted.

Example 4.44 (Money market). Let Y0 = Y0(ω) = a ∈ R. Define Yn+1 = (1 + r)Yn. (Here r
is the interest rate.)

Example 4.45 (Stock price). Let S0 ∈ R. Define Sn+1(ω) =
�

uSn(ω) ωn+1 = 1 ,

dSn(ω) ωn+1 = −1 .



Definition 4.46. We say an adapted process Mn is a martingale if EnMn+1 = Mn. (Recall
EnY = E(Y | Fn).)

Remark 4.47. Intuition: A martingale is a “fair game”.

Example 4.48 (Unbiased random walk). If ξ1, . . . , ξN are i.i.d. and mean zero, then Xn =�n
k=1 ξk is a martingale.





Remark 4.49. If M is a martingale, then for every m � n, we must have EmMn = Mm.

Remark 4.50. If M is a martingale then EMn = EM0 = M0.



4.6. Change of measure.
• Gambling in a Casino: If it’s a martingale, then on average you won’t make or lose money.
• Stock market: Bank always pays interest! Not looking for a “break even” strategy.
• Mathematical tool that helps us price securities: Find a Risk Neutral Measure.

� Discounted stock price is (usually) not a martingale.
� Invent a “risk neutral measure” which the discounted stock price is a martingale.
� Securities can be priced by taking a conditional expectation with respect to the risk

neutral measure. (That’s the meaning of Ẽn in Proposition 4.1.)



Definition 4.51. Let Dn = (1 + r)−n be the discount factor. (So Dn$ in the bank at time
0 becomes 1$ in the bank at time n.)

• Invent a new probability mass function p̃.
• Use a tilde to distinguish between the new, invented, probability measure and the old one.

� P̃ the probability measure obtained from the PMF p̃ (i.e. P̃ (A) =
�

ω∈A p̃(ω)).
� Ẽ, Ẽn conditional expectation with respect to P̃ (the new “risk neutral” coin)

Definition 4.52. We say P and P̃ are equivalent if for every A ∈ FN , P (A) = 0 if and
only if P̃ (A) = 0.

Definition 4.53. A risk neutral measure is an equivalent measure P̃ under which DnSn is
a martingale. (I.e Ẽn(Dn+1Sn+1) = DnSn.)

Remark 4.54. If there are more than one risky assets, S1, . . . , Sk, then we require DnS1
n,

. . . , DnSk
n to all be martingales under the risk neutral measure P̃ .

Remark 4.55. Proposition 4.1 says that any security with payoff VN at time N has arbitrage
free price Vn = 1

Dn
Ẽn(DN VN ) at time n. (Called the risk neutral pricing formula.)



Proposition 4.56. Let P̃ be an equivalent measure under which the coins are i.i.d. and
land heads with probability p̃1 and tails with probability q̃1 = 1 − p̃1.

(1) Under P̃ , we have Ẽn(Dn+1Sn+1) = p̃1u+q̃1d
1+r DnSn.

(2) P̃ is the risk neutral measure if and only if p̃1u+ q̃1d = 1+r. (Explicitly p̃1 = 1+r−d
u−d ,

and q̃1 = u−(1+r)
u−d .)





Theorem 4.57. Let Xn represent the wealth of a portfolio at time n. The portfolio is
self-financing portfolio if and only if the discounted wealth DnXn is a martingale under the
risk neutral measure P̃ .

Remark 4.58. Recall a portfolio is self financing if Xn+1 = ΔnSn+1 + (1 + r)(Xn − ΔnSn)
for some adapted process Δn.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.

(2) All replication has to be done using self-financing portfolios.
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Proof of Proposition 4.1.







Example 4.59. Consider two stocks S1 and S2, u = 2, d = 1/2.
� The coin flips for S1 are heads with probability 90%, and tails with probability 10%.
� The coin flips for S2 are heads with probability 99%, and tails with probability 1%.
� Which stock do you like more?
� Amongst a call option for the two stocks with strike K and maturity N , which one will be

priced higher?



Remark 4.60. Even though the stock price changes according to a coin that flips heads with
probability p1, the arbitrage free price is computed using conditional expectations using the
risk neutral probability. So when computing ẼnVN , we use our new invented “risk neutral”
coin that flips heads with probability p̃1 and tails with probability q̃1.

Concepts that will be generalized to continuous time.
• Probability measure: Lebesgue integral, and not a finite sum. Same properties.
• Filtration: Same intuition. No easy description.
• Conditional expectation: Same properties, no formula.
• Risk neutral measure: Formula for P̃ is complicated (Girsanov theorem.)
• Everything still works because of of Theorem 4.57. Understanding why is harder.



5. Stochastic Processes
5.1. Brownian motion.
• Discrete time: Simple Random Walk.

� Xn =
�n

1 ξi, where ξi’s are i.i.d. Eξi = 0, and Range(ξi) = {±1}.
• Continuous time: Brownian motion.

� Yt = Xn + (t − n)ξn+1 if t ∈ [n, n + 1).
� Rescale: Y ε

t =
√

εYt/ε. (Chose
√

ε factor to ensure Var(Y ε
t ) ≈ t.)

� Let Wt = lim
ε→0

Y ε
t .

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

� Named after Robert Brown (a botanist).
� Definition is intuitive, but not as convenient to work with.











• If t, s are multiples of ε: Y ε
t − Y ε

s ∼ √
ε

(t−s)/ε�

i=1
ξi

ε→0−−−→ N (0, t − s).

• Y ε
t − Y ε

s only uses coin tosses that are “after s”, and so independent of Y ε
s .

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wt − Ws ∼ N (0, t − s),
(2) Wt − Ws is independent of Fs.



5.2. Sample space, measure, and filtration.
• Discrete time: Sample space Ω = (ω1, . . . , ωN ).
• View (ω1, . . . , ωN ) as the trajectory of a random walk.
• Continuous time: Sample space Ω = C([0, ∞)) (space of continuous functions).

� It’s infinite. No probability mass function!
� Mathematically impossible to define P (A) for all A ⊆ Ω.



• Restrict our attention to G, a subset of some sets A ⊆ Ω, on which P can be defined.
� G is a σ-algebra. (Closed countable under unions, complements, intersections.)

• P is called a probability measure on (Ω, G) if:
� P : G → [0, 1], P (∅) = 0, P (Ω) = 1.
� P (A ∪ B) = P (A) + P (B) if A, B ∈ G are disjoint.

� If An ∈ G, P
� ∞�

1
An

�
= lim

n→∞
P (An).

• Random variables are measurable functions of the sample space:
� Require {X ∈ A} ∈ G for every “nice” A ⊆ R.
� E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3, 4)} ∈ G, etc.
� Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.



• Expectation is a Lebesgue Integral: Notation EX =
�

Ω
X dP =

�

Ω
X(ω)dP (ω).

� No simple formula.
� If X =

�
ai1Ai

, then EX =
�

aiP (Ai).

� 1A is the indicator function of A: 1A(ω) =
�

1 ω ∈ A

0 ω �∈ A



Proposition 5.3 (Useful properties of expectation).
(1) (Linearity) α, β ∈ R, X, Y random variables, E(αX + βY ) = αEX + βEY .
(2) (Positivity) If X � 0 then EX � 0. If X � 0 and EX = 0 then X = 0 almost surely.
(3) (Layer Cake) If X � 0, EX =

� ∞

0
P (X � t) dt.

(4) More generally, if ϕ is increasing, ϕ(0) = 0 then Eϕ(X) =
� ∞

0
ϕ�(t) P (X � t) dt.

(5) (Unconscious Statistician Formula) If PDF of X is p, then Ef(X) =
� ∞

−∞
f(x)p(x) dx.



• Filtrations:
� Discrete time: Fn = events described using the first n coin tosses.
� Coin tosses doesn’t translate well to continuous time.
� Discrete time try #2: Fn = events described using the trajectory of the SRW up to time

n.
� Continuous time: Ft = events described using the trajectory of the Brownian motion up

to time t.
� If ti � t, Ai ⊆ R then {Wt1 ∈ A1, . . . , Wtn ∈ An} ∈ Ft. (Need all ti � t!)
� As before: if s � t, then Fs ⊆ Ft.
� Discrete time: F0 = {∅, Ω}. Continuous time: F0 = {A ∈ G | P (A) ∈ {0, 1}}.





5.3. Conditional expectation.
• Notation Et(X) = E(X | Ft) (read as conditional expectation of X given Ft)
• No formula! But same intuition as discrete time.
• EtX(ω) = “average of X over Πt(ω)”, where Πt(ω) = {ω� ∈ Ω | ω�(s) = ω(s) ∀s � t}.
• Mathematically problematic: P (Πt(ω)) = 0 (but it still works out.)



Definition 5.4. EtX is the unique random variable such that:
(1) EtX is Ft-measurable.
(2) For every A ∈ Ft,

�

A

EtX dP =
�

A

X dP

Remark 5.5. Choosing A = Ω implies E(EtX) = EX.

Proposition 5.6 (Useful properties of conditional expectation).
(1) If α, β ∈ R are constants, X, Y , random variables Et(αX + αY ) = αEtX + βEtY .
(2) If X � 0, then EtX � 0. Equality holds if and only if X = 0 almost surely.
(3) (Tower property) If 0 � s � t, then Es(EtX) = EsX.
(4) If X is Ft measurable, and Y is any random variable, then Et(XY ) = XEtY .
(5) If X is Ft measurable, then EtX = X (follows by choosing Y = 1 above).
(6) If Y is independent of Ft, then EtY = EY .

Remark 5.7. These properties are exactly the same as in discrete time.
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Lemma 5.8 (Independence Lemma). If X is Ft measurable, Y is independent of Ft, and
f = f(x, y) : R2 → R is any function, then

Etf(X, Y ) = g(Y ) , where g(y) = Ef(X, y) .

Remark 5.9. If pX is the PDF of X, then Etf(X, Y ) =
�

R
f(x, Y ) pX(x) dx.



5.4. Martingales.

Definition 5.10. An adapted process M is a martingale if for every 0 � s � t, we have
EsMt = Ms.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information
available today will not change your expected return.



Proposition 5.12. Brownian motion is a martingale.

Proof.





6. Stochastic Integration
6.1. Motivation.
• Hold bt shares of a stock with price St.
• Only trade at times P = {0 = t1 < . . . , tn = T}

• Net gain/loss from changes in stock price:
n−1�

k=0
btk

ΔkS, where ΔkS = Stk+1 − Stk
.

• Trade continuously in time. Expect net gain/loss to be lim
�P �→0

n−1�

k=0
btk

ΔkS =
� T

0
bt dSt.

� �P� = maxk(tk+1 − tk).

� Riemann-Stieltjes integral: lim
�P �→0

n−1�

k=0
bξk

ΔkS =
� T

0
bt dSt,

� The ξk ∈ [tk, tk+1] can be chosen arbitrarily.
� Only works if the first variation of S is finite. False for most stochastic processes.







6.2. First Variation.

Definition 6.1. For any process X, define the first variation by

V[0,T ](X) def= lim
�P �→0

n−1�

k=0
|ΔkX| .

def= lim
�P �→0

n−1�

k=0
|Xtk+1 − Xti

| .

Remark 6.2. If X(t) is a differentiable function of t then V[0,T ]X < ∞.

Proposition 6.3. EV[0,T ]W = ∞
Remark 6.4. In fact, V[0,T ]W = ∞ almost surely. Brownian motion does not have finite first
variation.

Remark 6.5. The Riemann-Stieltjes integral
� T

0 bt dWt does not exist.









6.3. Quadratic Variation.

Definition 6.6. If M is a continuous time adapted process, define

[M, M ]T = lim
�P �→0

n−1�

k=0
(Mtk+1 − Mtk

)2 = lim
�P �→0

n−1�

k=0
(ΔkM)2 .

Proposition 6.7. For continuous processes the following hold:
(1) Finite first variation implies the quadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.



Proposition 6.8. [W, W ]T = T almost surely.

Remark 6.9. For use in the proof: Var(N (0, σ2)2) = EN (0, σ2)4 − (EN (0, σ2)2)2 = 2σ2.

Proof:.







Proposition 6.10. W 2
t − [W, W ]t is a martingale.





Theorem 6.11. Let M be a continuous martingale.
(1) EM2

t < ∞ if and only if E[M, M ]2t < ∞.
(2) In this case M2

t − [M, M ] is a continuous martingale.
(3) Conversely, if M2

t − At is a martingale for any continuous, increasing process A
such that A0 = 0, then we must have At = [M, M ]t.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.
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Remark 6.13. If X has finite first variation, then |Xt+δt − Xt| ≈ O(δt).

Remark 6.14. If X has finite quadratic variation, then |Xt+δt − Xt| ≈ O(
√

δt) � O(δt).



6.4. Itô Integrals.
• Dt = D(t) some adapted process (position on an asset).
• P = {0 = t0 < t1 < · · ·} increasing sequence of times.
• �P� = maxi ti+1 − ti, and ΔiX = Xti+1 − Xti

.
• W : standard Brownian motion.

• IP (T ) def=
n−1�

i=0
DtiΔiW + Dtn(WT − Wtn)

Definition 6.15. The Itô Integral of D with respect to Brownian motion is defined by

IT =
� T

0
Dt dWt = lim

�P �→0
IP (T ) .

Remark 6.16. Suppose for simplicity T = tn.
(1) Riemann integrals: lim

�P �→0

�
Dξi

ΔiW exists, for any ξi ∈ [ti, ti+1].

(2) Itô integrals: Need ξi = ti for the limit to exist.



Theorem 6.17. If E

� T

0
D2

t dt < ∞ a.s., then:

(1) IT = lim
�P �→0

IP (T ) exists a.s., and EI(T )2 < ∞.

(2) The process IT is a martingale: EsIt = Es

� t

0
Dr dWr =

� s

0
Dr dWr = Is

(3) [I, I]T =
� T

0
D2

t dt a.s.

Remark 6.18. If we only had
� T

0
D2

t dt < ∞ a.s., then I(T ) = lim
�P �→0

IP (T ) still exists, and

is finite a.s. But it may not be a martingale (it’s a local martingale).



Corollary 6.19 (Itô isometry). E
�� T

0
Dt dWt

�2
= E

� T

0
D2

t dt

Proof.









Intuition for Theorem 6.17 (2). Check IP (T ) is a martingale.

















Proposition 6.20. If α, α̃ ∈ R, D, D̃ adapted processes
� T

0
(αDs + α̃D̃s) dWs = α

� T

0
Ds dWs + α̃

� T

0
D̃s dWs

Proposition 6.21.
� T1

0
Ds dWs +

� T2

T1

Ds dWs

Question 6.22. If D � 0, then must
� T

0 Dt dWt � 0?



6.5. Semi-martingales and Itô Processes.

Question 6.23. What is
� t

0
Ws dWs?



Definition 6.24. A semi-martingale is a process of the form X = X0 + B + M where:
� X0 is F0-measurable (typically X0 is constant).
� B is an adapted process with finite first variation.
� M is a martingale.

Definition 6.25. An Itô-process is a semi-martingale X = X0 + B + M , where:

� Bt =
� t

0
bs ds, with

� t

0
|bs| ds < ∞

� Mt =
� t

0
σs dWs, with

� t

0
|σs|2 ds < ∞

Remark 6.26. Short hand notation for Itô processes: dXt = bt dt + σt dWt.

Remark 6.27. Expressing X = X0+B+M (or dX = b dt+σ dW ) is called the semi-martingale
decomposition or the Itô decomposition of X.



Theorem 6.28 (Itô formula). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t

Remark 6.29. This is the main tool we will use going forward. We will return and study it
thoroughly after understanding all the notions involved.



Proposition 6.30. If X = X0 + B + M , then [X, X] = [M, M ].



Proposition 6.31 (Uniqueness). The Itô decomposition is unique. That is, if X = X0 +
B + M = Y0 + C + N , with:
� B, C bounded variation, B0 = C0 = 0
� M, N martingale, M0 = N0 = 0.
Then X0 = Y0, B = C and M = N .
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Proposition 6.31 (Uniqueness). The Itô decomposition is unique. That is, if X = X0 +
B + M = Y0 + C + N , with:
� B, C bounded variation, B0 = C0 = 0
� M, N martingale, M0 = N0 = 0.
Then X0 = Y0, B = C and M = N .





Corollary 6.32. Let dXt = bt dt + σt dWt with E
� t

0 bs ds < ∞ and E
� t

0 σ2
s ds < ∞. Then

X is a martingale if and only if b = 0.



Definition 6.33. If dX = b dt + σ dW , define
� T

0
Dt dXt =

� T

0
Dtbt dt +

� T

0
Dtσt dWt.

Remark 6.34. Note
� T

0
Dtbt dt is a Riemann integral, and

� T

0
Dtσt dWt is a Itô integral.



6.6. Itô’s formula.

Remark 6.35. If f and X are differentiable, then
df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt







Theorem (Itô’s formula, Theorem 6.28). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t

Remark 6.36. If dXt = bt dt + σt dWt then

df(t, Xt) =
�

∂tf(t, Xt) + bt + 1
2σ2

t

�
dt + ∂xf(t, Xt)σt dWt .





Intuition behind Itô’s formula.











Example 6.37. Find the quadratic variation of W 2
t .









Example 6.38. Find
� t

0
Ws dWs.



Example 6.39. Let Mt = Wt, and Nt = W 2
t − t.

� We know M, N are martingales.
� Is MN a martingale?







Example 6.40. Let Xt = t sin(Wt). Is X2
t − [X, X]t a martingale?







7. Review Problems
Problem 7.1. If 0 � r � s � t, find E(WsWt) and E(WrWsWt).









Problem 7.2. Define the processes X, Y, Z by

Xt =
� Wt

0
e−s2

ds , Yt = exp
�� t

0
Ws ds

�
, Zt = tX2

t

Decompose each of these processes as the sum of a martingale and a process of finite first
variation. What is the quadratic variation of each of these processes?













Problem 7.3. Define the processes X, Y by

Xt
def=

� t

0
Ws ds , Yt

def=
� t

0
Ws dWs .

Given 0 � s < t, compute EXt, EYt, EsXt, EsYt.









Problem 7.4. Let Mt =
� t

0
Ws dWs. Find a function f such that

E(t) def= exp
�

Mt −
� t

0
f(s, Ws) ds

�

is a martingale.







Problem 7.5. Suppose σ = σt is a deterministic (i.e. non-random) process, and M is a
martingale such that d[M, M ]t = σ2

t dt.

Xt =
� t

0
σu dWu .

(1) Given λ, s, t ∈ R with 0 � s < t compute EeλMt and EseλMt−Ms

(2) If r � s compute E exp(λMr + µ(Mt − Ms)).
(3) What is the joint distribution of (Mr, Mt − Ms)?
(4) (Lévy’s criterion) If d[M, M ]t = dt, then show that M is a standard Brownian

motion.























Problem 7.6. Define the process X, Y by

X =
� t

0
s dWs , Y =

� t

0
Ws ds .

Find a formula for EXn
t and EY n

t for any n ∈ N.











8. Black Scholes Merton equation
• Cash: simple interest rate r in a bank.
• Let Δt be small. Cn Δt be cash in bank at time n Δt.
• Withdraw at time n Δt and immediately re-deposit: C(n+1)Δt = (1 + r Δt)CnΔt.
• Set t = nΔt, send Δt → 0: ∂tC = rC and Ct = C0ert.
• r is called the continuously compounded interest rate.
• Alternately: If a bank pays interest rate ρ after time T , then the equivalent continuously

compounded interest rate is r = 1
T ln(1 + ρ).



• Stock price: St+Δt = (1 + r Δt)St + noise.
� Variance of noise should be proportional to Δt.
� Variance of noise should be proportional to St.

• St+Δt − St = rSt Δt + σSt(ΔWt).

Definition 8.1. A Geometric Brownian motion with parameters α, σ is defined by:
dSt = αSt dt + σSt dWt .

• α: Mean return rate (or percentage drift)
• σ: volatility (or percentage volatility)



Proposition 8.2. St = S0 exp
��

α − σ2

2

�
t + σWt

�





Market Assumptions.
• 1 stock, Price St, modelled by GBM(α, σ).
• Money market: Continuously compounded interest rate r.

� Ct = cash at time t = C0ert. (Or ∂tCt = rCt.)
� Borrowing and lending rate are both r.

• Frictionless (no transaction costs)
• Liquid (fractional quantities can be traded)



Consider a security that pays VT = g(ST ) at maturity time T .

Theorem 8.3. If the security can be replicated, and f = f(t, x) is a function such that the
wealth of the replicating portfolio is given by Xt = f(t, St), then:

∂tf + rx∂xf + σ2x2

2 ∂2
xf − rf = 0 x > 0, t < T ,(8.1)

f(t, 0) = g(0)e−r(T −t) t � T ,(8.2)
f(T, x) = g(x) x � 0 .(8.3)

Theorem 8.4. Conversely, if f satisfies (8.1)–(8.3) then the security can be replicated, and
Xt = f(t, St) is the wealth of the replicating portfolio at any time t � T .

Remark 8.5. Wealth of replicating portfolio equals the arbitrage free price.

Remark 8.6. g(x) = (x − K)+ is a European call with strike K and maturity T .

Remark 8.7. g(x) = (K − x)+ is a European put with strike K and maturity T .



Proposition 8.8. A standard change of variables gives an explicit solution to (8.1)–(8.3):

(8.4) f(t, x) =
� ∞

−∞
e−rτ g

�
x exp

��
r − σ2

2

�
τ + σ

√
τ y

��e−y2/2dy√
2π

, τ = T − t .

Corollary 8.9. For European calls, g(x) = (x − K)+, and
(8.5) f(t, x) = c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))
where

(8.6) d±(τ, x) def= 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

,

and

(8.7) N(x) def= 1√
2π

� x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.



Remark 8.10. Equation (8.1) is called a partial differential equation. In order to have a
unique solution it needs:
(1) A terminal condition (this is equation (8.3)),
(2) A boundary condition at x = 0 (this is equation (8.2)),
(3) A boundary condition at infinity (not discussed yet).

� For put options, g(x) = (K − x)+, the boundary condition at infinity is
lim

x→∞
f(t, x) = 0 .

� For call options, g(x) = (x − K)+, the boundary condition at infinity is
lim

x→∞

�
f(t, x) − (x − Ke−r(T −t))

�
= 0 or f(t, x) ≈ (x − Ke−r(T −t)) as x → ∞ .



Definition 8.11. If Xt is the wealth of a self-financing portfolio then
dXt = Δt dSt + r(Xt − ΔtSt) dt

for some adapted process Δt (called the trading strategy).





Proof of Theorem 8.3.











Proof of Theorem 8.4.

















Proof of Theorem 8.4.







Proof of Theorem 8.4 (without discounting).











Remark 8.12. The arbitrage free price does not depend on the mean return rate!



Question 8.13. Consider a European call with maturity T and strike K. The payoff is
VT = (ST − K)+. Our proof shows that the arbitrage free price at time t � T is given by
Vt = c(t, St), where c is defined by (8.5). The proof uses Itô’s formula, which requires c to be
twice differentiable in x; but this is clearly false at t = T . Is the proof still correct?





Proposition 8.14 (Put call parity). Consider a European put and European call with the
same strike K and maturity T .
� c(t, St) = AFP of call (given by (8.5))
� p(t, St) = AFP of put.
Then c(t, x) − p(t, x) = x − Ke−r(T −t), and hence p(t, x) = Ke−r(T −t) − x − c(t, x).



8.3. The Greeks. Let c(t, x) be the arbitrage free price of a European call with maturity T
and strike K when the spot price is x. Recall

c(t, x) = xN(d+) − Ke−rτ N(d−) , d±
def= 1

σ
√

τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

, τ = T − t .

Definition 8.15. The delta is ∂xc.

Remark 8.16 (Delta hedging rule). Δt = ∂xc(t, St).

Proposition 8.17. ∂xc = N(d+)









Definition 8.18. The Gamma is ∂2
xc and is given by ∂2

xc = 1
xσ

√
2πτ

exp
�−d2

+
2

�
.

Definition 8.19. The Theta is ∂tc, and is given by ∂tc = −rKe−rτ N(d−) − σx

2
√

τ
N �(d+)



Proposition 8.20. (1) c is increasing as a function of x.
(2) c is convex as a function of x.
(3) c is decreasing as a function of t.







Remark 8.21. To properly hedge a short call, you always borrow from the bank. Moreover
ΔT = 1 if ST > K, ΔT = 0 if ST < K.





Remark 8.22 (Delta neutral, Long Gamma). Say x0 is the spot price at time t.
• Short ∂xc(t, x0) shares, and buy one call option valued at c(t, x0).
• Put M = x0∂xc(t, x0) − c(t, x0) in the bank.
• What is the portfolio value when if the stock price is x (and we hold our position)?

� (Delta neutral) Portfolio value = c(t, x) − tangent line.
� (Long gamma) By convexity, portfolio value is always non-negative.











9. Multi-dimensional Itô calculus
• Let X and Y be two Itô processes.
• P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ].

Definition 9.1. The joint quadratic variation of X, Y , is defined by

[X, Y ]T = lim
�P �→0

n−1�

i=0
(Xti+1 − Xti)(Yti+1 − Yti) ,

Remark 9.2. The joint quadratic variation is sometimes written as d[X, Y ]t = dXt dYt.



Lemma 9.3. [X, Y ]T = 1
4 ([X + Y, X + Y ]T − [X − Y, X − Y ]T )



Proposition 9.4 (Product rule). d(XY )t = Xt dYt + YtdXt + d[X, Y ]t







Proposition 9.5. Say X, Y are two semi-martingales.
• Write X = X0 + B + M , where B has bounded variation and M is a martingale.
• Write Y = Y0 + C + N , where C has bounded variation and N is a martingale.
• Then d[X, Y ]t = d[M, N ]t.

Remark 9.6. Recall, all processes are implicitly assumed to be adapted and continuous.





Corollary 9.7. If X is a semi-martingale and B has bounded variation then [X, B] = 0.



Notation.
• d-dimensional vectors: Write x = (x1, . . . , xd) ∈ Rd.
• d-dimensional random vectors: X = (X1, . . . , Xd), where each Xi is a random variable.
• d-dimensional stochastic processes: Xt = (X1

t , . . . , Xd
t ), where each Xi

t is a stochastic
process.
� For scalars (or random variables): X i denotes the i-th power of X.
� For vectors (or random random vectors): X i denotes the i-th coordinate of X.
� There is no ambiguity (can’t take powers of vectors, or coordinates of scalars)

• Alternate notation used in many books: Use X(t) for the d-dimensional stochastic process,
and Xi(t) for the i-th coordinate.

• May sometimes write X = (X1, . . . , Xd) for random vectors, instead of (X1, . . . , Xd).



Remark 9.8 (Chain rule). If X is a differentiable function of t, then

d(f(t, Xt)) = ∂tf(t, Xt) dt +
d�

i=1
∂if(t, Xt) dXi

t

Remark 9.9 (Notation). ∂tf = ∂f
∂t , ∂if = ∂f

∂xi
.





Theorem 9.10 (Multi-dimensional Itô formula).
• Let X be a d-dimensional Itô process. Xt = (X1

t , . . . , Xd
t ).

• Let f = f(t, x) be a function that’s defined for t ∈ R, x ∈ Rd.
• Suppose f ∈ C1,2. That is:

� f is once differentiable in t
� f is twice in each coordinate xi

� All the above partial derivatives are continuous. Then:

d(f(t, Xt)) = ∂tf(t, Xt) dt +
d�

i=1
∂if(t, Xt) dXi

t + 1
2

�

i,j

∂i∂jf(t, Xt) d[Xi, Xj ]t



Remark 9.11 (Integral form of Itô’s formula).

f(T, XT ) − f(0, X0) =
� T

0
∂tf(t, Xt) dt +

d�

i=1

� T

0
∂if(t, Xt) dXi

t

+ 1
2

�

i,j

� T

0
∂i∂jf(t, Xt) d[Xi, Xj ]t

Remark 9.12. As with the 1D Itô, will drop the arguments (t, Xt). Remember they are there.



Intuition behind Theorem 9.10.





To use the d-dimensional Itô formula, we need to compute joint quadratic variations.

Proposition 9.13. Let M, N be continuous martingales, with EM 2
t < ∞ and EN2

t < ∞.
(1) MN − [M, N ] is also a continuous martingale.
(2) Conversely if MN − B is a continuous martingale for some continuous adapted,

bounded variation process B with B0 = 0, then B = [M, N ].

Proof.





Proposition 9.14. (1) (Symmetry) [X, Y ] = [Y, X]
(2) (Bi-linearity) If α ∈ R, X, Y, Z are semi-martingales, [X, Y +αZ] = [X, Y ]+α[X, Z].

Proof.



Proposition 9.15. Let M, N be two martingales, σ, τ two adapted processes.

• Let Xt =
� t

0
σs dMs and Yt =

� t

0
τs dNs.

• Then [X, Y, X, Y ]t =
� t

0 σs τs d[M, N ]s.

Remark 9.16. Alternately, if dXt = σt dMt and dYt = τt dNt, then d[X, Y ]t = σtτt d[M, N ]t.

Intuition.





Proposition 9.17. If M, N are continuous martingales, EM2
t < ∞, EN2

t < ∞ and M, N
are independent, then [M, N ] = 0.

Remark 9.18 (Warning). Independence implies E(MtNt) = EMtENt. But it does not imply
Es(MtNt) = EsMtEsNt. So you can’t use this to show MN is a martingale, and hence
conclude [M, N ] = 0.

Correct proof.









Remark 9.19. [M, N ] = 0 does not imply M , N are independent. For example:
• Let Mt =

� t

0 1Ws < 0 dWs

• Let Nt =
� t

0 1Ws � 0 dWs



Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W 1, . . . , W d) is a Brownian motion if:

(1) Each coordinate W i is a standard 1-dimensional Brownian motion.
(2) For i �= j, the processes W i and W j are independent.

Remark 9.21. If W is a d-dimensional Brownian motion then d[W i, W j ]t =
�

dt i = j ,

0 dt i �= j .



Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.

(2) The joint quadratic variation satisfies: d[W i, W j ]t =
�

dt i = j ,

0 dt i �= j .

Then M is a d-dimensional Brownian motion.

Proof. Find EseλMi
t +µMj

t using Itô’s formula, similar to Problem 7.5. �



Example 9.23. Let f ∈ C1,2, W be a d-dimensional Brownian motion, and set Xt = f(t, Wt).
Find the Itô decomposition of X.



Question 9.24. Let W be a 2-dimensional Brownian motion. Let Xt = ln(|Wt|2) =
ln((W 1

t )2 + (W 2
t )2). Is X a martingale?



10. Risk Neutral Pricing
Goal.
• Consider a market with a bank and one stock.
• The interest rate Rt is some adapted process.
• The stock price satisfies dSt = αtSt dt + σtSt dWt. (Here α, σ are adapted processes).
• Find the risk neutral measure and use it to price securities.

Definition 10.1. Let Dt = exp(−
� t

0 Rs ds) be the discount factor.

Remark 10.2. Note ∂tD = −RtDt.

Remark 10.3. Dt dollars in the bank at time 0 becomes $1 in the bank at time t.



Theorem 10.4. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
� T

0
θt dWt − 1

2

� T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Theorem 10.5. Any security can be replicated. If a security pays VT at time T , then the
arbitrage free price at time t is

Vt = 1
Dt

Ẽt(DT VT ) .

Remark 10.6. We will explain the notation dP̃ = ZT dP and prove both the above theorems
later.



Definition 10.7. We say P̃ is a risk neutral measure if:
(1) P̃ is equivalent to P (i.e. P̃ (A) = 0 if and only if P (A) = 0)
(2) DtSt is a P̃ martingale.

Remark 10.8. As before, if P̃ is a new measure, we use Ẽ to denote expectations with respect
to P̃ and Ẽt to denote conditional expectations.
Example 10.9. Fix T > 0. Let ZT be a FT -measurable random variable.
• Assume ZT > 0 and EZT = 1.
• Define P̃ (A) = E(ZT 1A) =

�

A

ZT dP .

• Can check ẼX = E(ZT X). That is
�

Ω
X dP̃ =

�

Ω
X ZT dP .

• Notation: Write dP̃ = ZT dP .
Lemma 10.10. Let Zt = EtZT . If Xt is Ft-measurable, then ẼsX = 1

Zs
Ẽs(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem in part 2 of this course. �



Theorem 10.11 (Cameron, Martin, Girsanov). Fix T > 0, and define:
• bt = (b1

t , . . . , bd
t ) a d-dimensional adapted process.

• W a d-dimensional Brownian motion.
• W̃t = Wt +

� t

0 bs ds (i.e. dW̃t = bt dt + dW̃t).
• dP̃ = ZT dP , where

Zt = exp
�

−
� t

0
bs · dWs − 1

2

� t

0
|bs|2 ds

�
.

If Z is a martingale, then P̃ is an equivalent measure under which W̃ is a Brownian motion
up to time T .





Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W 1, . . . , W d) is a Brownian motion if:

(1) Each coordinate W i is a standard 1-dimensional Brownian motion.
(2) For i �= j, the processes W i and W j are independent.

Remark 9.21. If W is a d-dimensional Brownian motion then d[W i, W j ]t =
�

dt i = j ,

0 dt i �= j .



Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.

(2) The joint quadratic variation satisfies: d[W i, W j ]t =
�

dt i = j ,

0 dt i �= j .

Then M is a d-dimensional Brownian motion.

Proof. Find EseλMi
t +µMj

t using Itô’s formula, similar to Problem 7.5. �



Example 9.23. Let f ∈ C1,2, W be a d-dimensional Brownian motion, and set Xt = f(t, Wt).
Find the Itô decomposition of X.



Question 9.24. Let W be a 2-dimensional Brownian motion. Let Xt = ln(|Wt|2) =
ln((W 1

t )2 + (W 2
t )2). Is X a martingale?



10. Risk Neutral Pricing
Goal.
• Consider a market with a bank and one stock.
• The interest rate Rt is some adapted process.
• The stock price satisfies dSt = αtSt dt + σtSt dWt. (Here α, σ are adapted processes).
• Find the risk neutral measure and use it to price securities.

Definition 10.1. Let Dt = exp(−
� t

0 Rs ds) be the discount factor.

Remark 10.2. Note ∂tD = −RtDt.

Remark 10.3. Dt dollars in the bank at time 0 becomes $1 in the bank at time t.



Theorem 10.4. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
� T

0
θt dWt − 1

2

� T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Theorem 10.5. Any security can be replicated. If a security pays VT at time T , then the
arbitrage free price at time t is

Vt = 1
Dt

Ẽt(DT VT ) = Ẽt

�
exp

�� T

t

−Rs ds
�

VT )
�

.

Remark 10.6. We will explain the notation dP̃ = ZT dP and prove both the above theorems
later.



Definition 10.7. We say P̃ is a risk neutral measure if:
(1) P̃ is equivalent to P (i.e. P̃ (A) = 0 if and only if P (A) = 0)
(2) DtSt is a P̃ martingale.

Remark 10.8. As before, if P̃ is a new measure, we use Ẽ to denote expectations with respect
to P̃ and Ẽt to denote conditional expectations.
Example 10.9. Fix T > 0. Let ZT be a FT -measurable random variable.
• Assume ZT > 0 and EZT = 1.
• Define P̃ (A) = E(ZT 1A) =

�

A

ZT dP .

• Can check ẼX = E(ZT X). That is
�

Ω
X dP̃ =

�

Ω
X ZT dP .

• Notation: Write dP̃ = ZT dP .
Lemma 10.10. Let Zt = EtZT . If Xt is Ft-measurable, then ẼsX = 1

Zs
Ẽs(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem. �



Theorem 10.11 (Cameron, Martin, Girsanov). Fix T > 0, and define:
• bt = (b1

t , . . . , bd
t ) a d-dimensional adapted process.

• W a d-dimensional Brownian motion.
• W̃t = Wt +

� t

0 bs ds (i.e. dW̃t = bt dt + dW̃t).
• dP̃ = ZT dP , where

Zt = exp
�

−
� t

0
bs · dWs − 1

2

� t

0
|bs|2 ds

�
.

If Z is a martingale, then P̃ is an equivalent measure under which W̃ is a Brownian motion
up to time T .
Remark 10.12. Note W̃t is a vector.

(1) So W̃t = Wt +
� t

0 bs ds means W̃ i
t = W i

t +
� t

0 bi
s ds, for each i ∈ {1, . . . , d}.

(2) Similarly, dW̃t = bt dt + dW̃t means dW̃ i
t = bi

t dt + dW̃ i
t for each i ∈ {1, . . . , d}.

Remark 10.13.
� t

0 bs · dWs means
� t

0
�d

i=1 bi
s dW i

s (dot product).



Proposition 10.14. dZt = −Ztbt · dWt. Explicitly, in coordinates, dZt = −Zt

d�

i=1
bi

t dW i
t .

Question 10.15. Looks like Z is a martingale. Why did we assume it in Theorem 10.11?







Idea behind the proof of Theorem 10.11.



Theorem (Theorem 10.4). The (unique) risk neutral measure is given by dP̃ = ZT dP ,
where

ZT = exp
�

−
� T

0
θt dWt − 1

2

� T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Proof of Theorem 10.4.









Theorem 10.16. Xt represents the wealth of a self-financing portfolio if and only if DtXt

is a P̃ martingale.

Remark 10.17. The proof of the backward direction requires the martingale representation
theorem, and is outlined on your homework.

Remark 10.18. This is the analog of Theorem 4.57

Proof of the forward direction.









Theorem (Theorem 10.5). Any security can be replicated. If a security pays VT at time T ,
then the arbitrage free price at time t is

Vt = 1
Dt

Ẽt(DT VT ) = Ẽt

�
exp

�� T

t

−Rs ds
�

VT )
�

.

Remark 10.19. This is the analog of Proposition 4.1.

Proof of Theorem 10.5.







11. Black Scholes Formula revisited
• Suppose the interest rate Rt = r (is constant in time).
• Suppose the price of the stock is a GBM(α, σ) (both α, σ are constant in time).

Theorem 11.1. Consider a security that pays VT = g(ST ) at maturity time T . The arbitrage
free price of this security at any time t � T is given by f(t, St), where

f(t, x) =
� ∞

−∞
e−rτ g

�
x exp

��
r − σ2

2

�
τ + σ

√
τ y

��e−y2/2dy√
2π

, τ = T − t .(8.4)

Remark 11.2. This proves Proposition 8.8.









Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a European call with
strike K and maturity T is given by:

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))(8.5)
where

d±(τ, x) def= 1
σ

√
τ

�
ln

� x

K

�
+

�
r ± σ2

2

�
τ
�

,(8.6)

and

(8.7) N(x) def= 1√
2π

� x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.

Remark 11.4. This proves Corollary 8.9.


