12. Review problems

Problem 12.1. Consider the N period Binomial model with $N=5$, and parameters $0<d<$ $1+r<u$. At maturity $N=5$, a security pays $\$ 1$ if $S_{5}>\left(\overline{1+r) S_{4}}\right.$, and 0 otherwise. Find the arbitrage free price and trading strategy trading at time 0 .

Butler strategy 1

iie. Draong a tme of stock friess may he emayh (Mach much less wark!!)
Dow twe of Stoth paices up to time 4 \& then coin loses

$$
\begin{array}{ll}
\tilde{q}=\frac{1+r-n d}{u-d} \\
\tilde{q}=\frac{m(1+n)}{k-1} & V_{4}=\frac{1}{1+r} \widetilde{E}_{4} V_{5}
\end{array}
$$

time $n=5$
duans con toses

$$
V_{0}=\frac{1}{(1+r)^{4}} \tilde{E} V_{4}=\frac{\tilde{p} / 1+r}{(1+r)^{4}}=\frac{\tilde{\phi}}{(1+r)^{5}}
$$

Thady stad $\Delta_{0}=\frac{V_{1}(1)-V_{1}(-1)}{S_{0}(u-d)}=0$

Problem 12.2. Let f be a deterministic function, and define

$$
X_{t} \stackrel{\text { def }}{=} \int_{0}^{t} f(s) \underline{W_{s}} d s
$$

Find the distribution of X.

$$
W^{F} X_{t}=E_{-}^{X} \int_{0}^{\infty} f_{0}^{\infty}(s) W_{s} d s=0
$$

$$
\begin{aligned}
& \text { Nthide of this as } \\
& \lim _{m} \sum f\left(t_{i}\right) w_{t_{i}}\left(t_{i+1}-t_{i}\right) \\
& \|P\| \rightarrow 0 \\
& \text { Loco. of nomads } \\
& \xrightarrow{ } \text { Normal - }
\end{aligned}
$$

(2)

$$
\begin{aligned}
E X_{t}^{2} & =E\left(\int_{0}^{t} f(s) \omega_{s} d s\right)^{2} \\
& =E \int_{0}^{t} f(c) \omega_{s} d s \int_{0}^{t} f(s) \omega_{s} d s \\
r & c_{r} \\
& =E \int_{0}^{t} \int_{0}^{t} f(s) f(r) \omega_{s} \omega_{r} d s d r
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{t} \int_{0}^{t} f(s) f(r)(s \wedge r) d s d r \\
& =\int_{0}^{t} \int_{s=0}^{r} f(s) f(r) s d s d r+\int_{r=0}^{t} \int_{s=r}^{t} f(s) f(r) r d s d r
\end{aligned}
$$

\&eradurle both!

Problem 12.3. Suppose $\underline{\sigma}, \underline{\tau}, \underline{\rho}$ are three deterministic functions and M and N are two continuous martingales with respect to a common filtration $\left\{\mathcal{F}_{t}\right\}$ such that $M_{0}=N_{0}=0$, and
(a) Compute the joint moment generating function $\boldsymbol{E} \exp (\lambda M(t)+\mu N(t))$.
(b) (Lévy's criterion) If $\sigma=\tau=1$ and $\rho=0$, show that (M, N) is a two dimensional Brownian motion.

$$
\begin{aligned}
& \text { Lat } \underline{\underline{\varphi}(t)}=E e^{\lambda M_{t}+\mu N_{t}} . \\
& \text { Find } \varphi(t): \operatorname{Let} X_{t}=e^{\lambda M_{t}+\mu N_{t}}=\left(\left(t, M_{t}, N_{t}\right)\right.
\end{aligned}
$$

Whene $f(b, y, y)=e^{\lambda x+r y}$
Laumple (1) $\partial_{t f}=0$
(2) $\partial_{x} f=\lambda f, \partial_{x}^{2} f=\lambda^{2} f$
(3) $\partial_{y} f=\mu f, \partial_{y}^{2} f=\mu^{2} f$
(4) $\partial_{\lambda} \partial_{\eta f} f=\lambda \mu f$.

$$
\begin{aligned}
& \Rightarrow d X_{t}=\partial_{f f} f d t+\partial_{x f} f d M+\partial_{y f} f d N+ \\
&+\frac{1}{2}\left(\partial_{\lambda}^{2} f d[M, M]+\partial_{y}^{2} f d[N, N]\right. \\
& \partial_{x} \partial_{y} f d[M, N]+\partial_{y} \partial_{x f} d[N, M] \\
&=0+\lambda f_{f} d M+\mu f d N \\
&+\frac{1}{2}\left(\lambda_{f}^{2} f \sigma+\mu_{\underline{f}}^{2} f \tau+2 \lambda \mu \rho f\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e^{\lambda \mu_{t}+\mu N_{t}}-1=X_{t}-X_{0} \\
& =\lambda \int_{0}^{t} f_{0}^{x} d M_{s}+\mu \int_{0}^{t} f_{0}^{x} d \omega_{s}+\frac{1}{2} \int_{0}^{t} x f_{0}^{\downarrow}\left(\lambda^{2} \sigma+\mu^{2} \tau+2 \lambda \mu \rho\right) d \varepsilon^{\downarrow} \\
& \left.\Rightarrow E e^{\lambda M_{t}-\mu N_{t}}-1\right)=E X_{t}-X_{0}=\varphi(t)-1 \\
& =0+0+\frac{1}{2} \int_{0}^{t} \varphi(s)\left(\lambda^{2} \sigma(s)+\mu^{2} \tau(s)+2 \lambda \mu \rho(s)\right) d s
\end{aligned}
$$

$$
\Rightarrow \partial_{t} \varphi=\frac{1}{2}\left(\lambda^{2} \sigma(t)+\mu^{2} \tau(t)+2 \lambda \mu \rho(t)\right) \varphi(t)
$$

Same $\left.\Rightarrow \varphi(t)=1 \cdot \exp \left(\frac{1}{2} \lambda_{\nu}^{2} \int_{0}^{t} \sigma d s+\mu^{2} \int_{0}^{t} \tau+2 \lambda \mu \int_{0}^{t} e\right]\right)$
$=M$ great of nomal woth mean O
\& cov matix $\left(\begin{array}{ll}\int_{0}^{t} \sigma &]_{0} \rho \\ 0 & \int_{0}^{\rho} \\ 0 & \int_{0}^{t} \tau\end{array}\right)$

Nole: If $r=1, \tau=1, \rho=0$
thum $\left.\begin{array}{rl}d[M, M] & =d t \\ d[N, N] & =d t \\ d[M, N] & =0\end{array}\right\} \leftarrow$ Jind QV of a 2D BoM.
$\otimes \Rightarrow$ MGF of $(M, N)=M G F$ of Nowal, mean 0 $\&$ lor whix $\left(\begin{array}{cc}x & 0 \\ 0 & t\end{array}\right)$

Gun clak simulaly
$\binom{M_{t}-M_{s}}{N_{t}-N_{s}} \sim 2 D \operatorname{mana}\left(\right.$ noan $0 \& \operatorname{con}\left(\begin{array}{cc}t-s & 0 \\ 0 & t-s\end{array}\right)$
$\&$ is ind of f_{s}
$\Rightarrow(M, N)$ is a $2 D$ BrM. (Levy!)

Problem 12.4. Consider a financial market consisting of a risky asset and a money market account. Suppose the return rate on the money market account is r, and the price of the risky asset, denoted by $\underline{\underline{S}}$, is a geometric Brownian motion with mean return rate $\underline{\alpha}$ and volatility $\underline{\sigma}$. Here r, α and σ are all deterministic constants. Compute the arbitrage free price of derivative security that pays

$$
\rightarrow V_{T}=\underline{\frac{1}{T}} \int_{0}^{T} S_{t} d t
$$

at maturity T. Also compute the trading strategy in the replicating portfolio.

$$
\text { RNP falla: For my } t \leq T
$$

$$
\text { AFP is } V_{t}=\frac{1}{D_{t}} \underset{E_{t}}{\sim}\left(D_{T} V_{T}\right)
$$

$$
\begin{aligned}
&= e^{-\tau(T-t)} \tilde{E}_{t} V_{T} \\
&= e^{-\tau(T-t)} \tilde{E}_{t}^{t} \frac{1}{T} \int_{0}^{T} S_{s} d s \\
&=\frac{e^{-\tau \tau}}{T}\left(\int_{0}^{t} \tilde{E}_{t} s_{s} d s+\int_{t}^{T} \tilde{E}_{t} s_{s} d s\right)
\end{aligned}
$$

$$
=\frac{e^{-r \tau}}{T}(\int_{0}^{t} S_{s} d s+\int_{t}^{T} \underbrace{E_{t} S_{s}} d s)
$$

Ned to final this!
Option $1: S_{s}^{(s>t)}=S_{t} \operatorname{eap}\left(\left(1-\frac{\sigma^{2}}{2}\right)(s-t)+\sigma\left(\tilde{\omega}_{s}-\tilde{\omega}_{t}\right)\right)$

$$
(d S=\alpha S d t+\sigma S d \omega
$$

apply Ito to $\ln (s)$ a solve)

$$
\begin{aligned}
& \rightarrow \Rightarrow \tilde{E}_{t} S_{s}=\tilde{E}_{t}(\tilde{S}_{t} \text { eap }(\left(n-\frac{r^{2}}{2}\right)(s-t)+\sigma \underbrace{\left(\tilde{\omega}_{s}-\tilde{\omega}_{t}\right)}_{(\text {opton 1) })})
\end{aligned}
$$

$\stackrel{(\text { pption 2) }}{=} S_{t} e^{\left(r-\tau^{2} / 2\right)(s-t)} \tilde{E} e^{\sigma\left(\tilde{\omega}_{s}-\tilde{\omega}_{t}\right)}$

$$
\begin{aligned}
& =S_{t} e^{\left(r-\sigma^{2} / 2\right)(s-t)} e^{\sigma^{2}(s-t) / 2} \\
& (s>t)
\end{aligned} \quad(M G F \text { of manal! ! }) ~ l
$$

Oftion 2: Fimp $\widetilde{E}_{t} S_{S}$ by disconting! (Muen fartar) Know $e^{-\pi s} S_{s}$ is a \tilde{p} mg!

$$
\begin{aligned}
\Rightarrow \tilde{E}_{t} S_{s}=e^{+r s} \tilde{E}_{t}\left(e^{-r s} S_{s}\right) & =e^{r-r s}\left(e^{-r t} S_{t}\right) \\
& =e^{r(s-t)} S_{t}!
\end{aligned}
$$

Sultitule bade \& go V_{t} !

Problem 12.5. Let $X \sim N(0,1)$, and $a, \alpha, \beta \in \mathbb{R}$. Define a new measure $\underline{\underline{\boldsymbol{P}}}$ by $d \tilde{\boldsymbol{P}}=\exp (\alpha X+\beta) d \boldsymbol{P}$.
Find α, β such that $X+a \sim N(0,1)$ under $\tilde{\boldsymbol{P}} . \quad \mathbb{\tau}_{z}$
Couple MGF of $X+a$ mols $\underset{P}{\sim}$
Find $\widetilde{E}\left(e^{\lambda(\lambda+a)}\right)$
Note $\widetilde{E}\left(e^{\lambda(X+a)}\right)=E\left(e^{\lambda(X+a)} \cdot z\right)$

$$
\begin{aligned}
& =E\left(e^{\lambda(X+a)+\alpha X+\beta}\right) \\
& =\left(E e^{(\lambda+\alpha) X}\right) \cdot e^{a \lambda+\beta} \\
& =e^{(\lambda+\alpha) / 2+a \lambda+k}
\end{aligned}
$$

$\stackrel{\text { Wat }}{=} e^{\lambda^{2} / 2}$.

$$
\begin{aligned}
& \text { St } \frac{(\lambda+\alpha)^{2}}{2}+a \lambda+\beta=\frac{\lambda^{2}}{2} \quad(\text { for all } \lambda \in \mathbb{R}) \\
& \Leftrightarrow \frac{1}{2}_{2}^{2}+\alpha \lambda+\frac{\alpha^{2}}{2}+a \lambda+\beta=\frac{\lambda^{2}}{2}(\quad \underbrace{\left.\alpha^{2}+a\right) \lambda}_{\text {eque } 60}+\underbrace{\frac{\alpha^{2}}{2}+\beta}_{\text {equte } \text { to }^{2}}=0 \quad \begin{array}{r}
\text { pt } \alpha=-a \\
\beta=-a^{2} \\
\beta
\end{array}
\end{aligned}
$$

Problem 12.6. Let $x_{0}, \mu, \theta, \sigma \in \mathbb{R}$, and suppose X is an Itô process that satisfies

$$
d X(t)=\theta\left(\mu-X_{t}\right) d t+\sigma d W_{t}
$$

with $X_{0}=x_{0}$.
(a) Find functions $f=f(t)$ and $g=g(s, t)$ such that

$$
X(t)=f(t)+\int_{0}^{t} g(s, t) d W_{s}
$$

The functions f, g may depend on the parameters x_{0}, θ, μ and σ, but should not depend on X.
(b) Compute $\boldsymbol{E} X_{t}$ and $\operatorname{cov}\left(X_{s}, X_{t}\right)$ explicitly.

Problem 12.7. Let $\theta \in \mathbb{R}$ and define

$$
Z(t)=\exp \left(\theta W_{t}-\frac{\theta^{2} t}{2}\right)
$$

Given $0 \leqslant s<t$, and a function f, find a function such that

$$
\boldsymbol{E}_{s} f\left(Z_{t}\right)=g(Z(s))
$$

Your formula for the function g can involve f, s, t and integrals, but not the process Z or expectations.

Problem 12.8. Let W be a Brownian motion, and define

$$
B_{t}=\int_{0}^{t} \underbrace{\operatorname{sign}\left(W_{s}\right)} d W_{s} .
$$

(a) Show that B is a Brownian motion.

$$
\left(\operatorname{sign}(x)=\left\{\begin{array}{cc}
1 & x \geqslant 0 \\
-1 & x<0
\end{array}\right.\right.
$$

(b) Is there an adapted process σ such that

$$
W_{t}=\int_{0}^{t} \sigma_{s} d B_{s} ?
$$

If yes, find it. If no, explain why.
(c) Compute the joint quadratic variation $[B, W]$.
(d) Are B and W uncorrelated? Are they independent? Justify. $\}$.
\qquad
(a) \rightarrow Levy: Nad
(1) Continuous
(2) B is a
mol mg
(Ito
int P

$$
(3) d[B, B]=d t \quad(\because d[B B]=1 d t \quad)
$$

(6) Find σ se that $W_{t}=\int_{0}^{t} \sigma_{s} d B_{s}$

Wate $d B=\sqrt{\operatorname{sign}\left(\omega_{s}\right)} d \omega_{s}$

$$
\Rightarrow d \omega_{s}=\underbrace{\frac{1}{\sin \left(\omega_{s}\right)}}_{\sigma_{s}} d B_{s} \Rightarrow \omega_{t}=\int_{0}^{t} \operatorname{sign}\left(\omega_{s}\right) d B_{s}
$$

(c)

$$
\begin{aligned}
& \alpha[B, \omega]_{t}=\operatorname{sim}\left(\omega_{t}\right) \cdot 1 d[\omega, \omega]_{t} \\
& d B_{t}=\operatorname{sig}\left(W_{t}\right) d \omega_{t} \\
& d \omega_{t}=1 d \omega_{t} \\
& =\operatorname{cigh}\left(\omega_{t}\right) d t \\
& \Rightarrow[B, \omega]_{t}=\int_{0}^{t} \operatorname{sigga}\left(\omega_{s}\right) d\left(\omega \omega_{s} d t\right.
\end{aligned}
$$

(d) Find $E\left(B_{t} W_{t}\right)$:

$$
\begin{aligned}
d(B \omega) & =B d \omega+\omega d B+d[B, \omega] \\
\Rightarrow B_{t} W_{t}-0 & =\int_{0}^{t} B_{s} d \omega_{s}+\int_{0}^{t} \omega_{c} d B_{s}+\int_{0}^{t} \operatorname{sign}\left(\omega_{s}\right) d s \\
\Rightarrow E\left(B_{t} \omega_{t}\right) & =0+0+\int_{0}^{t} \underbrace{E \operatorname{sigh}\left(\omega_{s}\right) d s}_{0}
\end{aligned}
$$

$\Rightarrow B \& W$ are unconverted!
Note $B_{t} \& W_{t}$ are bath mosul, Not Jointly nome! ned nat \Rightarrow inhale

If $B \& W$ weme imalep $\Rightarrow[B, \omega \omega]=0$
But $[B, \omega]=\int_{0}^{t} \operatorname{sip}\left(\omega_{s}\right) d s \neq 0$
$\rightarrow B \& W$ can WOT he inolp!

Problem 12.9. Let W be a Brownian motion. Does there exist an equivalent measure $\tilde{\boldsymbol{P}}$ under which the process $t W_{t}$ is a Brownian motion? Prove it.

$$
\left(\begin{array}{l}
d\left(\int_{0}^{t} f(s) d s\right)=f(t) d t \\
\Rightarrow \frac{d}{(d t} \int_{0}^{t} f(s) d s=f(t) \quad \begin{array}{l}
M=\int_{0}^{t} W_{s} d s \\
F_{0} d E M_{t}^{2}
\end{array}
\end{array}\right.
$$

$$
\begin{gathered}
d\left(M^{2}\right)=\underbrace{2 M d M}_{n_{a d} w j_{0}}+\underbrace{d M, M]}_{0} \\
M_{t}^{2}=2 \int_{0}^{t} \underbrace{M_{t} \omega_{s} d s}_{d}+0 \\
d(M W)_{t}=M_{t} d \omega_{t}+\omega_{t}^{2} d t \Rightarrow E\left(M_{t} \omega_{t}\right)=0+\int_{0}^{t} s d s
\end{gathered}
$$

