12. Review problems

Problem 12.1. Consider the N period Binomial model with N = 5, and parameters 0 < d <
L +7 < u. At maturity N = 5, a security pays $1 if S5 > (1 + r)S4, and 0 otherwise. Find
the arbitrage free price and tr: trading strategy trading at time 0.
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Problem 12.2. Let( f %ye a deterministic function, and define

¢
X ‘*:ef/ f(s)Weds.
Find the distribution of X.

ok UM "

; b 2 00, )
mé;@@ W, ds = O .20 N
L o vl

— 5 Pl -

X~ A






dir

§ ib ol (enry de

h r‘vt}\g&"«
gﬁ qd (e)((v)go\solv 4 &5@ )

Y0 c=v
¢=0
= 0

Poude  [dl |



Problem 12.3. Suppose o,T,p are three deterministic functions and@an are two
continuous martingales with respect to a common filtration {F;} such that Mg= Ny = 0,
and ok ) 9

dIM, M), =&dt, d[N,N], =wdt, and  d[M,N], =g/ dt.
NN N~

(a) Compute the joint moment generating function IE exp(AM (t) + uN(t)).
(b) (Lévy’s criterion) If o = 7 = 1 and p = 0, show that (M, N) is a two dimensional
Brownian motion.
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Problem 12.4. Consider a financial market consisting of a and a money market
account. Suppose the return rate on the money market account is JR and the price of the

risky asset, denoted by S, is a geometric Brownian motion with mean return rate o and
volatility . Here r, a and o are all deterministic constants. Compute the arbitrage free | price

of derivative securlty that pays
1 T
—= Vp == Sy dt
T= 7 /0 t

at maturity 7. Also compute the trading strategy in the replicating portfolio.
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Problem 12.5. Let \; ~ N(0, 1),}and a,o, B € R. Define a new measure P by
_ M ~
dP :‘exp(gX —l—ﬁ) dP.

Find a, 8 such that @N N(0,1) under P. Ty \T&@\% e %x&
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Problem 12.6. Let xg,pu,0,0 € R, and suppose X is an [t6 process that satisfies
dX(t) =60(p— X;)dt + o dWy,

with Xg = xg.

(a) Find functions f = f(t) and g = ¢(s,t) such that

X(t) :f(t)+/0 g(s,t) dWs.

The functions f, g may depend on the parameters zq, 8, u and o, but should not depend
on X.

(b) Compute EX; and cov(X;, X;) explicitly.



Problem 12.7. Let 6 € R and define
0%t

Given 0 < s < t, and a function f, find a function such that

Ef(Z) = g(Z(s)).
Your formula for the function g can involve f, s, t and integrals, but not the process Z or
expectations.



Problem 12.8. Let W _be a Brownian motion, and define

¢ \
ne [ L)<

(a) \Show that B is a Brownian motion. -
(b) 'Is there an adapted process o such that

t
Wt:/ O'SdBS?
: 0

If yes, find it. If no, explain why.
(c) Compute the joint quadratich}_\;’
(d) W Are they independent? Justify. Z
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Problem 12.9. Let W be a Brownian motion. Does there exist an equivalent measure P
under which the process tW; is a Brownian motion? Prove it.









