havt time e Multi dim Ilo $d \left\{ (t, X_{t}) = \frac{2}{2t} dt + \frac{2}{2} \frac{2}{2t} dX_{t}^{i} + \frac{1}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2t} d[X_{t}, X_{t}] + \frac{1}{2} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} d[X_{t}, X_{t}] + \frac{1}{2} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} \frac{1}{2t} d[X_{t}, X_{t}] + \frac{1}{2} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} \frac{2}{2t} \frac{1}{2t} \frac{1}{2t}$ Joint QV.

Definition 9.20 (*d*-dimensional Brownian motion). We say a <u>d</u>-dimensional process $\underline{W} = (\underline{W}^1, \ldots, \underline{W}^d)$ is a Brownian motion if:

- (1) Each coordinate W^i is a standard <u>1-dimensional</u> Brownian motion.
- (2) For $\underline{i} \neq j$, the processes \underline{W}^i and W^j are independent.

Remark 9.21. If W is a d-dimensional Brownian motion then $d[W^i, W^j]_t = \begin{cases} dt & i = j, \\ 0 dt & i \neq j. \end{cases}$

Joint QV of mod ets mg = 0

Theorem 9.22 (Lévy). Let <u>M</u> be a d-dimensional process such that: (1) M is a continuous martingale. (2) The joint quadratic variation satisfies: $d[W^i, W^j]_t = \begin{cases} dt & i = j, \\ 0 dt & i \neq j. \end{cases}$ Then M is a d-dimensional Brownian motion. *Proof.* Find $E_s e^{\lambda M_t^i + \mu M_t^p}$ using Itô's formula, similar to Problem 7.5. $\left(k_{extadion}/k_{web}\right)$ > > M' & M's one ind for i + j $\mathcal{L} \Rightarrow M_{t} - M_{ts} \sim \mathcal{N}\left(0, \begin{pmatrix} ts \\ t-s \\ ts \end{pmatrix}\right)$

Example 9.23. Let $f \in C^{1,2}$, W be a *d*-dimensional Brownian motion, and set $X_t = f(t, W_t)$. Find the Itô decomposition of X.

Question 9.24. Let W be a 2-dimensional Brownian motion. Let $X_t = \ln(|W_t|^2) = \ln((W_t^1)^2 + (W_t^2)^2)$. Is X a martingale?

- **Goal.** Consider a market with a bank and one stock. The interest rate R_t is some adapted process. The stock price satisfies dG• The stock price satisfies $dS_t = \alpha_t S_t dt + \sigma_t S_t dW_t$. (Here α, σ are adapted processes).
 - Find the risk neutral measure and use it to price securities.

Definition 10.1. Let $D_t = \exp(-\int_0^t R_s ds)$ be the discount factor. Remark 10.2. Note $\partial_t D = -R_t D_t$.

Remark 10.3. (D_t) lollars in the bank at time 0 becomes (\$1) in the bank at time \underline{t} .

Theorem 10.4. The (unique) risk neutral measure is given by $d\tilde{P} = Z_T dP$, where $Z_T = \exp\left(-\int_0^T \underline{\theta}_t dW_t - \frac{1}{2}\int_0^T \theta_t^2 dt\right), \quad \left| \overline{\theta_t} = \frac{\alpha_t - \underline{R}_t}{\sigma_t} \right|^{\kappa}$

Theorem 10.5. Any security can be replicated. If a security pays $\underline{V_T}$ at time $\underline{\underline{T}}$, then the arbitrage free price at time $\underline{\underline{t}}$ is

$$\longrightarrow V_t = \frac{1}{D_t} \underbrace{\tilde{E}}_t (D_T V_T) = \tilde{E}_t \left(\exp\left(\int_t^T -R_s \, ds\right) V_T \right) \right).$$

Remark 10.6. We will explain the notation $d\tilde{\boldsymbol{P}} = Z_T d\boldsymbol{P}$ and prove both the above theorems later.

Definition 10.7. We say \tilde{P} is a risk neutral measure if:

 $\neq (1)$ \tilde{P} is equivalent to P (i.e. $\tilde{P}(A) = 0$ if and only if P(A) = 0) $- \not = (2) D_t S_t$ is a P martingale.

Remark 10.8. As before, if $\tilde{\boldsymbol{P}}$ is a new measure, we use $\tilde{\boldsymbol{E}}$ to denote expectations with respect to $\tilde{\boldsymbol{P}}$ and $(\tilde{\boldsymbol{E}}_t)$ to denote conditional expectations.

Example 10.9. Fix T > 0. Let $Z_{T_{\lambda}}$ be a \mathcal{F}_{T} -measurable random variable.

- Assume $Z_T \ge 0$ and $EZ_T = 1$. Define $\tilde{P}(\underline{A}) = E(Z_T \mathbf{1}_{\underline{A}}) = \int_{\underline{A}} Z_T d\mathbf{P}$. $(E \ge 2_T = 1 \implies P(\underline{A}) = E \ge 2_T \mathbf{1}_{\underline{A}} = E \ge 2_T \mathbf{1}_{\underline{A}}$. Can check $\tilde{E}X = E(Z_TX)$. That is $\int_{\Omega} X d\tilde{P} = \int_{\Omega} X Z_T dP$.
- Notation: Write $d\tilde{P} = Z_T dP$.

Lemma 10.10. Let $\underline{Z}_t = \mathbf{E}_t \underline{Z}_T$. If X_t is $\underline{\mathcal{F}}_t$ -measurable, then $\left| \tilde{\mathbf{E}}_s X_t \right| = \frac{1}{Z_s} \mathbf{E}_s (\underline{Z}_t X_t)$. *Proof.* You will see this in the proof of the Girsanov theorem.

Theorem 10.11 (Cameron, Martin, Girsanov). Fix T > 0, and define: $\mathbf{r} b_t = (b_t^1, \dots, b_t^d) \ a \ d$ -dimensional adapted process. (B₁= 5 bids • .W a d-dimensional Brownian motion. • $\tilde{W}_t = W_t + \int_0^t b_s ds$ (i.e. $d\tilde{W}_t = b_t dt + d\tilde{W}_t$). • $d\tilde{P} = Z_T dP$, where $Z_t = \exp\left(-\int_0^t \underbrace{b_s \cdot dW_s}_{t=0} - \frac{1}{2}\int_0^t \underbrace{|b_s|^2 ds}_{t=0}\right).$ $\underbrace{If Z \text{ is a martingale,}}_{up \text{ to time } \overline{T}.} \text{ then } (\tilde{\boldsymbol{P}}) \text{ is an equivalent measure under which } (\tilde{W}) \text{ is a Brownian motion}$ Remark 10.12. Note W_t is a vector.

(1) So $\underline{\tilde{W}}_t = W_t + \int_0^t \underline{b}_s \, ds$ means $\underline{\tilde{W}}_t^i = W_t^i + \int_0^t \underline{b}_s^i \, ds$, for each $i \in \{1, \dots, d\}$. (2) Similarly, $d\widetilde{W}_t = b_t \, dt + d\widetilde{W}_t$ means $d\widetilde{W}_t^i = b_t^i \, dt + d\widetilde{W}_t^i$ for each $i \in \{1, \dots, d\}$.

Remark 10.13. $\int_0^t \underline{b}_s \cdot \underline{dW}_s$ means $\int_0^t \sum_{i=1}^d b_s^i \underline{dW}_s^i$ (dot product).

 $Z_{t} = \left\{ \left(t, X_{t} \right) \right\} \qquad () \quad \partial_{t} \xi = \exp \left(\right) \cdot \left(-\frac{1}{2} \left| b_{t} \right|^{2} \right)$ (2) 2 = enp()(-1) $(4) l(X, X] = \sum_{i=1}^{d} \sum_{j=1}^{d} l_{i} l_{i} l_{j} l_{i} l_$ $= \sum_{i=1}^{d} (b_i^i)^2 dt = |b_i^i|^2 dt$

 $\Rightarrow d = \frac{2}{4t} dt + \frac{2}{2t} dX + \frac{1}{2} \frac{2}{5t} dX + \frac{1}{2} \frac{2}{5t} dX = \frac{2}{5t} dt + \frac{1}{2} \frac{2}{5t} dt = \frac{2}{5t} dt$

Idea behind the proof of Theorem 10.11.

WITS
$$\widetilde{W}$$
 is a BM under \widetilde{P} .
Will Show $[O[\widetilde{W},\widetilde{W}] = [W,W]_{2} = t$ [Ince
(2) \widetilde{W} is a \widetilde{P} ung $= \frac{94 \text{ edd} c}{(12 \text{ e} \text{ lowe} 10.10)}$
 $O(2) + \text{leng} \gg \widetilde{W}$ is a \widetilde{P} under \widetilde{P}

Theorem (Theorem 10.4). The (unique) risk neutral measure is given by $d\tilde{P} = Z_T dP$, where

Proof of Theorem 10.4.

 $t_{\text{nons}}: d\widetilde{W} = (m) dt + dW \longrightarrow finsnon gines \widetilde{P}$ noter which \widetilde{W} is a BM. (2 hos forme) Want D_fS_t to be a P RM RNM. ng

 $dS = \alpha_{1}S_{1} dt + \nabla_{1}S_{1} dW_{1}$ $(SD_{1} = -R_{1}D_{1} dt$ Comple & (DESE) ; $\Rightarrow d(P_{2}S) = D_{1} dS_{1} + S dD_{1} + d[S, D]$ $= D_{t} \left(\alpha_{t} S_{t} dt + \tau_{t} S_{t} dW \right) - R_{t} S_{t} D_{t} dt$ $= \underbrace{\mathsf{D}}_{\mathsf{t}} \underbrace{\mathsf{S}}_{\mathsf{t}} \left(\left(\underbrace{\mathsf{X}_{\mathsf{t}} - \mathsf{R}_{\mathsf{t}}}_{\mathsf{T}} \right) \mathsf{d} \mathsf{t} \right)$ $+ dW_{t}$)

 $= D_{t} \nabla_{t} S_{t} \left(\begin{array}{c} \Theta_{t} dt + dW \\ \Psi_{t} \end{array} \right), \quad \begin{array}{c} \Theta_{t} = \kappa_{t} - R_{t} \\ \nabla_{t} \\ \nabla_{t} \\ \Psi_{t} \end{array} \right)$ $= D_{t} \nabla_{t} S_{t} \quad dW, \quad \begin{array}{c} \Theta_{t} = \kappa_{t} - R_{t} \\ \Psi_{t} \\$ $= 2 \epsilon_{t} \leq d \psi_{t}$, By different \tilde{W} is a BM under \tilde{P} $d\tilde{W} = \Theta_1 dt + dW$

where $dP_{k} = Z_{T} dP$, $l Z_{T} = exp\left(-\int_{0}^{T} \Theta_{s} dW_{s} - \frac{1}{2}\int_{0}^{T} \Theta_{s}^{2} db\right)$ $d(D_{t}S_{t}) = J_{t}D_{t}S_{t}d\widetilde{W}$ BM under \widetilde{P} Hove, when P, Mg under Fl

Theorem 10.16. X_t represents the wealth of a self-financing portfolio if and only if $D_t X_t$ is a $\tilde{\boldsymbol{P}}$ martingale.

Remark 10.17. The proof of the backward direction requires the *martingale representation theorem*, and is outlined on your homework.

Remark 10.18. This is the analog of Theorem 4.57 Cave west for Birm Model. Proof of the forward direction.

٨

Assume
$$X = \text{wealth} d_a$$
 self for port.
 $\text{WTS}: D_t X_t$ is a \mathcal{P} mag.
 $\mathcal{P}_t X_t$ is a \mathcal{P} mag.
 $\mathcal{P}_t X_t$ is $\mathcal{P}_t dS_t + R_t (X_t - S_t S_t) dt$

Self for condition.

 $d(\underline{P}_{t}X_{t}) = \underline{P}_{t}dX_{t} + X_{t}d\underline{P}_{t} + d[\underline{D}, X]_{t}$ $= -R_{t} D_{t} X_{t} + D_{t} \left(\Delta_{t} dS + R_{t} \left(X_{t} - 4 C_{t} \right) dt \right)$

 $= \underbrace{p}_{4} \underbrace{4}_{1} \underbrace{1}_{5} - \underbrace{p}_{4} \underbrace{r}_{4} \underbrace{s}_{4} \underbrace{s}_{4} \underbrace{t} \cdots \underbrace{s}_{4} \underbrace{s}_{4}$

Also note $d(P_1 S_1) = P_1 dS + S dP_1 + O$ $= D_1 dS - RDS dt$

 $H_{\text{tree}} (\mathcal{D} \Rightarrow d(D_{t} \chi_{t}) = \Delta_{t} (D_{t} \partial S - R_{t} D_{t} S_{t} dt)$ $z \Delta_{t} d \left(D_{t} S_{t} \right)$ Pmq.

Vene DX ie a P ung (1

Theorem (Theorem 10.5). Any security can be replicated. If a security pays V_T at time T, then the arbitrage free price at time t is

$$V_t = \frac{1}{D_t} \tilde{\boldsymbol{E}}_t (D_T V_T) = \tilde{\boldsymbol{E}}_t \left(\exp\left(\int_t^T -R_s \, ds \right) V_T \right) \right).$$

Remark 10.19. This is the analog of Proposition 4.1.] \subset Byran where Proof of Theorem 10.5.

$$\begin{array}{ccc} O & \text{lef} & X_{\pm} &=& \frac{1}{D_{\pm}} \stackrel{\sim}{E_{\pm}} \left(D_{\mp} \stackrel{\text{wey}}{\Psi_{\mp}} \right) \\ \Rightarrow & O & X_{\pm} &=& \frac{1}{D_{\pm}} \stackrel{\sim}{E_{\pm}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \stackrel{\sim}{P_{\mp}} \left(P_{\mp} \vee_{\pm} \right) = & V_{\pm} = \frac{1}{2} \stackrel{\sim}{P_{\mp}} \stackrel{$$

 \mathcal{L} (b) Councille $\widetilde{E}_{\mathcal{S}}(D_{t}X_{t})$

 $= \widetilde{E}_{\varsigma} \left(\widetilde{E}_{J} \left(\mathcal{D}_{J} X_{J} \right) \right)$

 $\underbrace{\tilde{E}}_{c}(D_{T}X_{T}) = D_{c}X_{s}$

 $\Rightarrow D_{\mathcal{X}} X_{\mathcal{Y}}$ is a \mathcal{P} mg $\Rightarrow X = health of a set fin Port.$

 \Rightarrow AFP of time $t = V_t = X_t = \frac{1}{t} \tilde{E}(D_t V_t)$ $D_t = exp\left(-\int_0^t R_s \, ds\right)$

11. Black Scholes Formula revisited

- Suppose the interest rate $R_t = r$ (is constant in time).
- Suppose the price of the stock is a $GBM(\alpha, \sigma)$ (both α, σ are constant in time).

Theorem 11.1. Consider a security that pays $V_T = g(S_T)^{\dagger}$ at maturity time T. The arbitrage free price of this security at any time $\underline{t} \leq T$ is given by $(\underline{f}(\underline{t}, S_t))$, where

$$(\underbrace{\overset{8.4}{=}}) \qquad f(t, \underbrace{x}_{\underline{z}}) = \int_{-\infty}^{\infty} \underbrace{e^{-r\tau} \underline{g}}_{\underline{z}} \Big(\underbrace{x} \exp\Big(\Big(r - \frac{\sigma^2}{2}\Big) \underline{\tau} + \sigma \sqrt{\tau} \, y\Big) \Big) \frac{\underline{e^{-y^2/2}} dy}{\sqrt{2\pi}} \,, \qquad \tau = \underline{T - t} \,.$$

Remark 11.2. This proves Proposition 8.8.

$$F_{2}: D dS_{2} = \kappa S_{1} dt + r S_{1} dW (GBM)$$

2 Under RNM: $dS_{f} = \sum_{i} S_{f} dt + \tau S_{t} d\widetilde{W}$

 $\Rightarrow S_{t} = S_{0} erp\left(\left(\overset{\cdot}{r} - \frac{\tau}{2}\right)t + \tau \widetilde{W}_{t}\right)$ (From HW)

 $= \frac{1}{e^{-rt}} \stackrel{\sim}{\mathsf{E}}_{t} \left(e^{-rT} \mathfrak{g}(\mathsf{S}_{\mathsf{T}}) \right)$

 $= \bar{e}^{rT} \tilde{E}_{1} \left(S_{T} \right)$

$$\begin{split} S_{T} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right) \\ S_{t} &= S_{0} e_{np} \left(\begin{pmatrix} (r - \rho^{2}) T + \tau \tilde{W}_{T} \end{pmatrix} \right)$$

induction $e^{-\pi \tau} \int_{a}^{b} g\left(S_{t} e_{t} e_{t} \left(\left(r - \frac{\tau^{2}}{2}\right) \tau + \tau \sqrt{\tau} r_{t}\right) \frac{e^{-\frac{\tau^{2}}{2}}}{\sqrt{\tau \tau}} d_{y}\right)$ $g = -\pi r_{t}$

Theorem 11.3 (Black Scholes Formula). The arbitrage free price of a European call with strike K and maturity T is given by:

mon Thin 11.2

(8.5)
$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x))$$
where
(8.6)
$$d_{\pm}(\tau,x) \stackrel{\text{def}}{=} \frac{1}{\sigma\sqrt{\tau}} \left(\ln\left(\frac{x}{K}\right) + \left(r \pm \frac{\sigma^{2}}{2}\right)\tau \right),$$
and

$$1 - C^{x}$$

where

(8.6)
$$d_{\pm}(\tau, x) \stackrel{\text{def}}{=} \frac{1}{\sigma\sqrt{\tau}} \left(\ln\left(\frac{x}{K}\right) + \left(r \pm \frac{\sigma^2}{2}\right) \tau \right),$$

and

(8.7)
$$N(x) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} \, dy \,,$$

is the CDF of a standard normal variable. *Remark* 11.4. This proves Corollary 8.9.