$$
4
$$

9. Multi-dimensional Itô calculus

- Let X and Y be two Ito processes.
- $P=\left\{0=t_{1}<t_{1} \cdots<t_{n}=T\right\}$ is a partition of $[0, T]$.

$$
\|P\|=\max _{i}\left(t_{i+1}-t_{i}\right)
$$

Definition 9.1. The joint quadratic variation of $\underline{X}, \underline{\underline{Y}}$, is defined by

$$
[\underbrace{[X, Y]_{T}}=\lim _{\|P\| \rightarrow 0} \sum_{i=0}^{n-1}(\underbrace{X_{t_{i+1}}-X_{t_{i}}})(\underbrace{Y_{t_{i+1}}-Y_{t_{i}}}), \lim _{\|P\| \rightarrow 0} \sum_{i}\left(\Delta_{i} X\right)\left(\bigsqcup_{i} Y\right)
$$

Remark 9.2. The joint quadratic variation is sometimes written as $d[X, Y]_{t}=d X_{t} d Y_{t}$.

$$
\begin{aligned}
\text { Qr: }[x, x . x]_{T}= & \lim _{\|P\| \rightarrow 0} \sum_{i=0}^{n}(\underbrace{\Delta}_{\sim} \Delta^{-x})^{2} \\
& \Delta_{i} x=x_{t_{i+1}}-x_{t_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pf: } \quad(a+b)^{2}-(a-b)^{2}=4 a b
\end{aligned}
$$

Proposition 9.4 (Product rule). $d(\underline{X} \underline{Y})_{t}=X_{t} d Y_{t}+Y_{t} d X_{t}+d[X, Y]_{t}$
If $x \& y$ are diff $\frac{d}{d t}(x y)=x \frac{d y}{d t}+\frac{d x}{d t} y$

$$
\Rightarrow d(x y)=x d y+y d y
$$

If X, Y ane starch frees es (not doff)

$$
d(X Y)=x d Y+Y d X+d[X, Y]
$$

$$
P f: 4 x y=(x+y)^{2}-(x-y)^{2}
$$

In: $d\left((x+y)_{t}^{2}\right)=2\left(\begin{array}{c}\left.x_{t}+y_{t}\right)\end{array} d\left(X_{t}+y_{t}\right)+\frac{1}{2} \cdot 2 d[x+y, x+y]\right.$

$$
\begin{aligned}
d\left((x-y)_{t}^{2}\right)= & 2\left(x_{t}-y_{t}\right) d\left(x_{t}-y_{t}\right)+d[x-y, x-y]_{t} \\
= & 2 x_{t} d x_{t}+2 y_{t} d y_{t}-2 y_{t} d x_{t}-2 x_{t} d y_{t} \\
& +d[x-y, x-y]_{t} .
\end{aligned}
$$

$$
\left.\begin{array}{l}
\Rightarrow d\left((x+y)^{2}-(x-y)^{2}\right) \\
=4 x_{t} d y_{t}+4 y_{t} d x_{t}+d\left([x+y, x+y]_{t}\right. \\
-[x-y, x-y]_{t}
\end{array}\right)
$$

Proposition 9.5. Say X, Y are two semi-martingales.

- Write $X=\underline{X}_{0}+\underline{B}+\underline{\underline{M}}$, where B has bounded variation and M is a martingale.
- Write $Y=\underline{Y}_{0}+\underline{\underline{C}}+\underline{\underline{N}}$, where C has bounded variation and N is a martingale.
- Then $d[\underline{X}, Y]_{t}=d[M, N]_{t}$.

Remark 9.6. Recall, all processes are implicitly assumed to be adapted and continuous.

$$
\begin{aligned}
& P(:[x, y]=\frac{1}{4}([X+y, x+y]-[x-y, x-y]) \\
&=\frac{1}{4}([M+N, M+N]-(M-N, M-N])(\because B V \text { pant } \\
&\text { dos not chape } Q V)
\end{aligned}
$$

$$
=[M, N]
$$

Corollary 9.7. If $\underset{\underline{X}}{\underline{\sim}}$ is a semi-martingale and $\underline{\underline{B}}$ has bounded variation then $[X, B]=0$.

$$
\begin{aligned}
{[x, B] } & =[\operatorname{mg} \text { fol of } x, \operatorname{mg} \text { fat of } B] \\
& =[M, 0]=0
\end{aligned}
$$

Notation.

- d-dimensional vectors: Write $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$.
- d-dimensional random vectors: $\underline{X}=\left(\underline{X}_{1}, \ldots, X_{d}\right)$, where each X_{i} is a random variable.
- d-dimensional stochastic processes: $\underline{\underline{X_{t}}}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$, whereeach X_{t}^{i} is a stochastic process.
\triangleright For scalars (or random variables): \underline{X}^{i} denotes the $i \underline{\text { th }}$ power of X. \triangleright For vectors (or random random vectors): \underline{X}^{i} denotes the i-th coordinate of X. \triangleright There is no ambiguity (can't take powers of vectors, or coordinates of scalars)
- Alternate notation used in many books: Use $X(t)$ for the d-dimensional stochastic process, and $X_{i}(t)$ for the i-th coordinate.
- May sometimes write $\underline{X}=\left(X^{1}, \ldots, X^{\underline{d}}\right)$ for random vectors, instead of $\left(X_{1}, \ldots, X_{d}\right)$.

Nolation for $d-\operatorname{dim}$ Proosses

Remark $9.8\left(\frac{\text { (Chain rule). }}{\text { If }} \underline{\underline{X} \text { is a differentiable function } \phi f t \text { then }} \underset{\underline{=}}{\left.d\left(t, X_{t}\right)\right)=\partial_{t} f\left(t, X_{t}\right) d t+\sum_{i=1}^{d} \partial_{i} f\left(t, X_{t}\right) d X_{t}^{i}}\right.$
Remark 9.9 (Notation). $\underline{\underline{\partial_{t}} f}=\frac{\partial f}{\underline{\partial t}},{\underset{\sim}{i}}^{\partial^{\prime}}=\frac{\partial f}{\underline{\partial x_{i}}}$.

$$
\begin{aligned}
f= & f(t, x), x \in \mathbb{R}^{d} \\
& \frac{d}{d t}\left(f\left(t, x_{t}\right)\right) \stackrel{d t}{=}=\partial_{t}=\left.\right|_{\left(t, X_{t}\right)}=\left.\sum_{i=1}^{d t} \partial_{i}\right|_{\left(t, x_{t}\right)} \frac{d x^{i}}{d t}
\end{aligned}
$$

$$
\Rightarrow \frac{d}{d t} f\left(t, X_{t}\right)=a_{t} f\left(t, x_{t}\right)+\sum_{i=1}^{d} \partial_{i} f\left(t, X_{t}\right) \frac{d x^{i}}{d t}
$$

"Manthiply by $d t^{n} \&$ gt

$$
d f\left(t, x_{t}\right)=\partial_{t f}\left(t, x_{t}\right) d t+\sum_{i=1}^{d} \partial_{i b} \mid\left(t, x_{t}\right) d x^{i}
$$

Theorem 9.10 (Multi-dimensional Ito formula).

- Let $\underset{\underline{X}}{ }$ be a d -dimensional Ito process. $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$.
- Let $\vec{f}=f\left(\frac{t}{2}, \underline{\underline{x}}\right)$ be a function that's defined for $t \in \mathbb{R}, \underline{\underline{x}} \in \mathbb{R}^{d}$.
- Suppose $f \in \bar{C}^{1,2}$. That is:
$\triangleright f$ is once differentiable in (t)
$\triangleright f$ is twice in each coordinate x_{i} (includes $\partial_{i} \partial_{j} f$)
\triangleright All the above partial derivatives are continuous. Then:
extra! $\overline{d\left(f\left(\underline{t}, \underline{X_{t}}\right)\right)}=\underline{\partial_{t} f}\left(t, X_{t}\right) \underline{d t}+\sum_{i=1}^{d} \partial_{i} f\left(t, X_{t}\right) \underset{\sim}{d X_{t}^{i}}+\frac{1}{\underline{2}} \sum_{i, j} \partial_{i} \partial_{\underline{j}} f\left(t, X_{t}\right) \frac{d\left[X^{i}, X^{j}\right]_{t}}{\uparrow}$ Chain Rale

Remark 9.11 (Integral form of Itô's formula).

$$
\begin{aligned}
& f\left(T, \underline{X}_{T}\right)-f\left(0, X_{0}\right)=\int_{0}^{T} \underline{\partial_{t} f}\left(t, X_{t}\right) d t+\sum_{i=1}^{d} \int_{0}^{T} \partial_{\imath i} f\left(t, X_{t}\right) d X_{t}^{i} \\
&+\frac{1}{2} \sum_{i, j} \int_{0}^{T} \partial_{i} \partial_{j} f\left(t, X_{t}\right) d\left[X^{i}, X^{j}\right]_{t}
\end{aligned}
$$

$$
\int_{U}^{T} \partial_{t} d t+\sum_{i=1}^{d} \int_{i f} d x_{t}^{i}+\frac{1}{2} \sum_{i, j} \int_{0}^{T} \partial_{i} \partial_{j} f f\left[x^{i}, x^{j}\right]_{t}
$$

Intuition behind Theorem 9.10.

$$
\begin{aligned}
& P=\left\{0=t_{0}<t_{1}, \cdots \quad t_{n}=T\right\} \\
& f\left(T, X_{T}\right)-f\left(0, X_{0}\right)=\sum_{k=1}^{n} f\left(\dot{t}_{k+1}, X_{t_{k+1}}\right)-f\left(t_{k}, X_{t_{k}}\right)
\end{aligned}
$$

To use the d-dimensional Ito formula, we need to compute joint quadratic variations.
Proposition 9.13. Let $\underline{M}, \underline{N}$ be continuous martingales, with $\underline{\boldsymbol{E} M_{t}^{2}}<\infty$ and $\underline{E N_{t}^{2}}<\infty$.
(1) $M N-[M, N]$ is also a continuous martingale.
(2) Conversely if $M N-\underset{\underline{B}}{ }$ is a continuous martingale for some continuous adapted, bounded variation process B with $B_{0}=0$, then $B=[M, N]$.

$$
\begin{aligned}
& \text { Proof. (1) } \\
&(M N-[M, N])= M d N+N d M+d[M, N]-d(M, N] \\
&= M d N+N d M \\
& M \sim \sim
\end{aligned}
$$

(Recall: If M is a $w g$ thm $M^{2}-[M, M]$ is dot a mgg)

Proposition 9.14.
(1) (Symmetry) $[X, Y]=[Y, X]$
(2) (Bi-linearity) If $\propto \in \mathbb{R}, \underline{X}, Y, Z$ are semi-martingales, $[\underline{X}, Y+\alpha \underline{Z}]=[\underset{\sim}{X}, Y]+\alpha[\underline{X}, Z]$.

Proof.
$J_{\text {ginal }}$ Q,V $[x, y+\alpha z]_{T}=\lim _{|P| \rightarrow 0} \sum\left(\Delta_{i} x\right)\left(\Delta_{i}(y+\alpha z)\right)$

$$
\begin{aligned}
& =\lim _{\|\mathbb{P}\| \rightarrow 0} \sum \Delta_{i} x \Delta_{i} y+\alpha \sum\left(\Delta_{i} x\right)\left(\Delta_{i} z\right) \\
& =[x, y]_{T}+\alpha[x, z]_{T}
\end{aligned}
$$

Proposition 9.15. Let $\underline{M}, \underline{N}$ be two martingales, σ, τ two adapted processes.

- Let $\underset{\underline{X}}{\underline{X}}=\int_{0}^{t} \sigma_{s} d M_{s}$ and ${\underset{z}{2}}_{t}=\int_{0}^{t} \tau_{s} d \underline{\underline{N}}$.
- Then

$$
[x, y]_{t}=\int_{0}^{t} \sigma_{s} \tau_{s} d(M, N]
$$

Remark 9.16. Alternately, if $d X_{t}=\sigma_{t} d M_{t}$ and $d Y_{t}=\tau_{t} d N_{t}$, then $d[X, Y]_{t}=\sigma_{t} \tau_{t} d[M, N]_{t}$. Intuition.

$$
\text { Recall }[X, X]_{t}=\int_{0}^{t} \nabla_{s}^{2} d[M, M]_{s}
$$

$$
\rightarrow X_{T}=\lim _{\|P\| \rightarrow 0} \sum \sigma_{t_{i}} \Delta_{i} M \quad \Delta_{i} X=X_{t_{i+1}}-X_{t_{i}}
$$

$$
\begin{aligned}
Y_{T} & \left.=\lim _{V P M \rightarrow 0} \sum \tau_{t_{i}} \Delta_{i} N\right) \\
{[x, y] } & \approx \sigma_{t_{i}}\left(M_{t_{i+1}}-M_{t_{i}}\right) \\
& \approx \sum\left(\Delta_{i} X\right)\left(\Delta_{i} Y\right) \approx \tau_{t_{i}}\left(N_{t_{i+1}}-N_{t_{i}}\right) \\
& \sum\left(\sigma_{i} \Delta_{i} M\right)\left(\tau_{i} \Delta_{i} N\right) \longrightarrow \int_{0}^{T} \sigma_{t} \tau_{t} d(M, N]_{t}
\end{aligned}
$$

Proposition 9.17. If M, N are continuous martingales, $\boldsymbol{E} M_{t}^{2}<\infty, \overparen{E} N_{t}^{2}<\infty$ and $\underline{M, N}$ are independent, then $[M, N]=0$.
Remark 9.18 (Warning). Independence implies $\underset{\boldsymbol{E}}{(}\left(M_{t} N_{t}\right)=\boldsymbol{E} M_{t} \boldsymbol{E} N_{t}$. But it does not imply
 conclude $[M, N]=0$.

Correct proof.

$$
\text { WRong } \rightarrow
$$

(nad foo dele).

$$
\begin{array}{r}
E_{S}\left(M_{t} N_{t}\right) \stackrel{\text { mole }}{=} E_{S} M_{t} \underset{S}{E} N_{t}<\text { FALSE } \\
=M_{s} N_{S} \\
\Rightarrow M_{t} N_{t} \text { is a } m_{y} \quad k \Rightarrow[M, N]=0
\end{array}
$$

(Emend Pf: $\quad C_{\text {bim }} E[M, N]_{T}^{2}=0$

$$
\begin{aligned}
E[M, N]_{T}^{2} & \approx E\left(\sum\left(\Delta_{i} M\right)\left(\Delta_{i} N\right)\right)^{2} \\
& =E\left[\sum_{i, j}\left(\Delta_{i} M\right)\left(\Delta_{i} N\right)\left(\Delta_{j} M\right)\left(\Delta_{j} N\right)\right] \\
& =E \sum_{i=0}^{M-1}\left(\Delta_{i} M\right)^{2}\left(\Delta_{i} N\right)^{2}+2 E \sum_{j=1}^{M-1} \sum_{i=0}^{j-1}\left(\Delta_{i} M\right)\left(\Delta \Delta_{j} M\right)\left(\Delta_{i} N\right)\left(\Delta_{j}, N\right)
\end{aligned}
$$

$$
\begin{aligned}
& =11+2 \sum_{j=1}^{n-1} \sum_{i=0}^{j-1} E\left(\Delta_{i} M \Delta_{j}, M\right) E\left((\Delta, N) \Delta_{j}, \nu\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{n-1} E\left(\Delta_{i} M\right)^{2} E\left(\Delta_{i} N\right)^{2} .
\end{aligned}
$$

Remark 9.19. $[M, N]=0$ does not imply M, N are independent. For example:

- Let $M_{t}=\int_{0}^{t} 1 W_{s} \leqslant 0 d W_{s}$
- Let $\mathrm{A}_{t}=\int_{0}^{t} 1 W_{s} \geqslant 0 d W_{s}$

$$
\begin{aligned}
&\left.M_{t}=\int_{0}^{t} \frac{\mathbb{1}_{\left\{\omega_{s}<0\right\}} d \omega_{s}}{N_{t}=\int_{0}^{t} \mathbb{1}_{\left\{\omega_{s} \geqslant 0\right\}} d \omega_{s}}\right\}\left\{\begin{array}{rl}
& {[M, N]}
\end{array}=\mathbb{1}_{\left\{\omega_{s}<0\right\}} \mathbb{1}_{\left\{\omega_{s} \geqslant 0\right\}} d s\right. \\
&=0 d s
\end{aligned}
$$

Bat $M_{t}+N_{t}=\int_{0}^{t} 1 d \omega_{s}=\omega_{t} \leftarrow \Rightarrow M \& N$ are Do ind.

Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process $\underline{W}=$ ($\underline{W}^{1}, \ldots, \underline{W}^{d}$) is a Brownian motion if:
(1) Each coordinate \underline{W}^{i} is a standard 1-dimensional Brownian motion.

Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.
(2) The joint quadratic variation satisfies: $d\left[W^{i}, W^{j}\right]_{t}= \begin{cases}d t & i=j, \\ 0 d t & i \neq j .\end{cases}$

Then M is a d-dimensional Brownian motion.
Proof. Find $\boldsymbol{E}_{s} e^{\lambda M_{t}^{i}+\mu M_{t}^{j}}$ using Itô's formula, similar to Problem 7.5.

Example 9.23. Let $f \in C^{1,2}, W$ be a d-dimensional Brownian motion, and set $X_{t}=f\left(t, W_{t}\right)$. Find the Itô decomposition of X.

Question 9.24. Let W be a 2-dimensional Brownian motion. Let $X_{t}=\ln \left(\left|W_{t}\right|^{2}\right)=$ $\ln \left(\left(W_{t}^{1}\right)^{2}+\left(W_{t}^{2}\right)^{2}\right)$. Is X a martingale?

10. Risk Neutral Pricing

Goal.

- Consider a market with a bank and one stock.
- The interest rate R_{t} is some adapted process.
- The stock price satisfies $d S_{t}=\alpha_{t} S_{t} d t+\sigma_{t} S_{t} d W_{t}$. (Here α, σ are adapted processes).
- Find the risk neutral measure and use it to price securities.

Definition 10.1. Let $D_{t}=\exp \left(-\int_{0}^{t} R_{s} d s\right)$ be the discount factor.
Remark 10.2. Note $\partial_{t} D=-R_{t} D_{t}$.
Remark 10.3. D_{t} dollars in the bank at time 0 becomes $\$ 1$ in the bank at time t.

Theorem 10.4. The (unique) risk neutral measure is given by $d \tilde{\boldsymbol{P}}=Z_{T} d \boldsymbol{P}$, where

$$
Z_{T}=\exp \left(-\int_{0}^{T} \theta_{t} d W_{t}-\frac{1}{2} \int_{0}^{T} \theta_{t}^{2} d t\right), \quad \theta_{t}=\frac{\alpha_{t}-R_{t}}{\sigma_{t}}
$$

Theorem 10.5. Any security can be replicated. If a security pays V_{T} at time T, then the arbitrage free price at time t is

$$
V_{t}=\frac{1}{D_{t}} \tilde{\boldsymbol{E}}_{t}\left(D_{T} V_{T}\right)
$$

Remark 10.6. We will explain the notation $d \tilde{\boldsymbol{P}}=Z_{T} d \boldsymbol{P}$ and prove both the above theorems later.

Definition 10.7. We say $\tilde{\boldsymbol{P}}$ is a risk neutral measure if:
(1) $\tilde{\boldsymbol{P}}$ is equivalent to \boldsymbol{P} (i.e. $\tilde{\boldsymbol{P}}(A)=0$ if and only if $\boldsymbol{P}(A)=0$)
(2) $D_{t} S_{t}$ is a $\tilde{\boldsymbol{P}}$ martingale.

Remark 10.8. As before, if $\tilde{\boldsymbol{P}}$ is a new measure, we use $\tilde{\boldsymbol{E}}$ to denote expectations with respect to $\tilde{\boldsymbol{P}}$ and $\tilde{\boldsymbol{E}}_{t}$ to denote conditional expectations.
Example 10.9. Fix $T>0$. Let Z_{T} be a \mathcal{F}_{T}-measurable random variable.

- Assume $Z_{T}>0$ and $\boldsymbol{E} Z_{T}=1$.
- Define $\tilde{\boldsymbol{P}}(A)=\boldsymbol{E}\left(Z_{T} \mathbf{1}_{A}\right)=\int_{A} Z_{T} d \boldsymbol{P}$.
- Can check $\tilde{\boldsymbol{E}} X=\boldsymbol{E}\left(Z_{T} X\right)$. That is $\int_{\Omega} X d \tilde{\boldsymbol{P}}=\int_{\Omega} X Z_{T} d \boldsymbol{P}$.
- Notation: Write $d \tilde{\boldsymbol{P}}=Z_{T} d \boldsymbol{P}$.

Lemma 10.10. Let $Z_{t}=\boldsymbol{E}_{t} Z_{T}$. If X_{t} is \mathcal{F}_{t}-measurable, then $\tilde{\boldsymbol{E}}_{s} X=\frac{1}{Z_{s}} \tilde{\boldsymbol{E}}_{s}\left(Z_{t} X_{t}\right)$.
Proof. You will see this in the proof of the Girsanov theorem in part 2 of this course.

Theorem 10.11 (Cameron, Martin, Girsanov). Fix $T>0$, and define:

- $b_{t}=\left(b_{t}^{1}, \ldots, b_{t}^{d}\right)$ ad-dimensional adapted process.
- W a d-dimensional Brownian motion.
- $\tilde{W}_{t}=W_{t}+\int_{0}^{t} b_{s} d s$ (i.e. $d \tilde{W}_{t}=b_{t} d t+d \tilde{W}_{t}$).
- $d \tilde{\boldsymbol{P}}=Z_{T} d \boldsymbol{P}$, where

$$
Z_{t}=\exp \left(-\int_{0}^{t} b_{s} \cdot d W_{s}-\frac{1}{2} \int_{0}^{t}\left|b_{s}\right|^{2} d s\right)
$$

If Z is a martingale, then $\tilde{\boldsymbol{P}}$ is an equivalent measure under which \tilde{W} is a Brownian motion up to time T.

