




9. Multi-dimensional Itô calculus
• Let X and Y be two Itô processes.
• P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ].

Definition 9.1. The joint quadratic variation of X, Y , is defined by

[X, Y ]T = lim
�P �→0

n−1�

i=0
(Xti+1 − Xti)(Yti+1 − Yti) ,

Remark 9.2. The joint quadratic variation is sometimes written as d[X, Y ]t = dXt dYt.



Lemma 9.3. [X, Y ]T = 1
4 ([X + Y, X + Y ]T − [X − Y, X − Y ]T )



Proposition 9.4 (Product rule). d(XY )t = Xt dYt + YtdXt + d[X, Y ]t







Proposition 9.5. Say X, Y are two semi-martingales.
• Write X = X0 + B + M , where B has bounded variation and M is a martingale.
• Write Y = Y0 + C + N , where C has bounded variation and N is a martingale.
• Then d[X, Y ]t = d[M, N ]t.

Remark 9.6. Recall, all processes are implicitly assumed to be adapted and continuous.





Corollary 9.7. If X is a semi-martingale and B has bounded variation then [X, B] = 0.



Notation.
• d-dimensional vectors: Write x = (x1, . . . , xd) ∈ Rd.
• d-dimensional random vectors: X = (X1, . . . , Xd), where each Xi is a random variable.
• d-dimensional stochastic processes: Xt = (X1

t , . . . , Xd
t ), where each Xi

t is a stochastic
process.
� For scalars (or random variables): X i denotes the i-th power of X.
� For vectors (or random random vectors): X i denotes the i-th coordinate of X.
� There is no ambiguity (can’t take powers of vectors, or coordinates of scalars)

• Alternate notation used in many books: Use X(t) for the d-dimensional stochastic process,
and Xi(t) for the i-th coordinate.

• May sometimes write X = (X1, . . . , Xd) for random vectors, instead of (X1, . . . , Xd).



Remark 9.8 (Chain rule). If X is a differentiable function of t, then

d(f(t, Xt)) = ∂tf(t, Xt) dt +
d�

i=1
∂if(t, Xt) dXi

t

Remark 9.9 (Notation). ∂tf = ∂f
∂t , ∂if = ∂f

∂xi
.





Theorem 9.10 (Multi-dimensional Itô formula).
• Let X be a d-dimensional Itô process. Xt = (X1

t , . . . , Xd
t ).

• Let f = f(t, x) be a function that’s defined for t ∈ R, x ∈ Rd.
• Suppose f ∈ C1,2. That is:

� f is once differentiable in t
� f is twice in each coordinate xi

� All the above partial derivatives are continuous. Then:

d(f(t, Xt)) = ∂tf(t, Xt) dt +
d�

i=1
∂if(t, Xt) dXi

t + 1
2

�

i,j

∂i∂jf(t, Xt) d[Xi, Xj ]t



Remark 9.11 (Integral form of Itô’s formula).

f(T, XT ) − f(0, X0) =
� T

0
∂tf(t, Xt) dt +

d�

i=1

� T

0
∂if(t, Xt) dXi

t

+ 1
2

�

i,j

� T

0
∂i∂jf(t, Xt) d[Xi, Xj ]t

Remark 9.12. As with the 1D Itô, will drop the arguments (t, Xt). Remember they are there.



Intuition behind Theorem 9.10.





To use the d-dimensional Itô formula, we need to compute joint quadratic variations.

Proposition 9.13. Let M, N be continuous martingales, with EM 2
t < ∞ and EN2

t < ∞.
(1) MN − [M, N ] is also a continuous martingale.
(2) Conversely if MN − B is a continuous martingale for some continuous adapted,

bounded variation process B with B0 = 0, then B = [M, N ].

Proof.





Proposition 9.14. (1) (Symmetry) [X, Y ] = [Y, X]
(2) (Bi-linearity) If α ∈ R, X, Y, Z are semi-martingales, [X, Y +αZ] = [X, Y ]+α[X, Z].

Proof.



Proposition 9.15. Let M, N be two martingales, σ, τ two adapted processes.

• Let Xt =
� t

0
σs dMs and Yt =

� t

0
τs dNs.

• Then [X, Y, X, Y ]t =
� t

0 σs τs d[M, N ]s.

Remark 9.16. Alternately, if dXt = σt dMt and dYt = τt dNt, then d[X, Y ]t = σtτt d[M, N ]t.

Intuition.





Proposition 9.17. If M, N are continuous martingales, EM2
t < ∞, EN2

t < ∞ and M, N
are independent, then [M, N ] = 0.

Remark 9.18 (Warning). Independence implies E(MtNt) = EMtENt. But it does not imply
Es(MtNt) = EsMtEsNt. So you can’t use this to show MN is a martingale, and hence
conclude [M, N ] = 0.

Correct proof.









Remark 9.19. [M, N ] = 0 does not imply M , N are independent. For example:
• Let Mt =

� t

0 1Ws < 0 dWs

• Let Nt =
� t

0 1Ws � 0 dWs



Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W 1, . . . , W d) is a Brownian motion if:

(1) Each coordinate W i is a standard 1-dimensional Brownian motion.
(2) For i �= j, the processes W i and W j are independent.

Remark 9.21. If W is a d-dimensional Brownian motion then d[W i, W j ]t =
�

dt i = j ,

0 dt i �= j .



Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.

(2) The joint quadratic variation satisfies: d[W i, W j ]t =
�

dt i = j ,

0 dt i �= j .

Then M is a d-dimensional Brownian motion.

Proof. Find EseλMi
t +µMj

t using Itô’s formula, similar to Problem 7.5. �



Example 9.23. Let f ∈ C1,2, W be a d-dimensional Brownian motion, and set Xt = f(t, Wt).
Find the Itô decomposition of X.



Question 9.24. Let W be a 2-dimensional Brownian motion. Let Xt = ln(|Wt|2) =
ln((W 1

t )2 + (W 2
t )2). Is X a martingale?



10. Risk Neutral Pricing
Goal.
• Consider a market with a bank and one stock.
• The interest rate Rt is some adapted process.
• The stock price satisfies dSt = αtSt dt + σtSt dWt. (Here α, σ are adapted processes).
• Find the risk neutral measure and use it to price securities.

Definition 10.1. Let Dt = exp(−
� t

0 Rs ds) be the discount factor.

Remark 10.2. Note ∂tD = −RtDt.

Remark 10.3. Dt dollars in the bank at time 0 becomes $1 in the bank at time t.



Theorem 10.4. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
�

−
� T

0
θt dWt − 1

2

� T

0
θ2

t dt
�

, θt = αt − Rt

σt
.

Theorem 10.5. Any security can be replicated. If a security pays VT at time T , then the
arbitrage free price at time t is

Vt = 1
Dt

Ẽt(DT VT ) .

Remark 10.6. We will explain the notation dP̃ = ZT dP and prove both the above theorems
later.



Definition 10.7. We say P̃ is a risk neutral measure if:
(1) P̃ is equivalent to P (i.e. P̃ (A) = 0 if and only if P (A) = 0)
(2) DtSt is a P̃ martingale.

Remark 10.8. As before, if P̃ is a new measure, we use Ẽ to denote expectations with respect
to P̃ and Ẽt to denote conditional expectations.
Example 10.9. Fix T > 0. Let ZT be a FT -measurable random variable.
• Assume ZT > 0 and EZT = 1.
• Define P̃ (A) = E(ZT 1A) =

�

A

ZT dP .

• Can check ẼX = E(ZT X). That is
�

Ω
X dP̃ =

�

Ω
X ZT dP .

• Notation: Write dP̃ = ZT dP .
Lemma 10.10. Let Zt = EtZT . If Xt is Ft-measurable, then ẼsX = 1

Zs
Ẽs(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem in part 2 of this course. �



Theorem 10.11 (Cameron, Martin, Girsanov). Fix T > 0, and define:
• bt = (b1

t , . . . , bd
t ) a d-dimensional adapted process.

• W a d-dimensional Brownian motion.
• W̃t = Wt +

� t

0 bs ds (i.e. dW̃t = bt dt + dW̃t).
• dP̃ = ZT dP , where

Zt = exp
�

−
� t

0
bs · dWs − 1

2

� t

0
|bs|2 ds

�
.

If Z is a martingale, then P̃ is an equivalent measure under which W̃ is a Brownian motion
up to time T .


