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9. Multi-dimensional It6 calculus {"
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e Let X and Y be two Itd processes. T
o P={0=t1 <ty <tn, =T} is a partition of [0, 7. ‘\\ _[,) /E>
Definition 9.1. The joint quadratic variation of X, Y, is defined by
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Remark 9.2. The joint quadratic variation is sometimes written as d[X,Y]; = dX; dY;
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Lemma 9.3. [X, Y]y =1([X+Y, X +Y]r - [X -Y, X - Y]r)
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Proposition 9.4 (Product rule). d(XY); = X;dY; + YidX; —|—
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Proposition 9.5. Say X,Y are two semi-martingales.

o Write X = Xo + B+ M, where B has bounded variation and M is a martingale.
o WriteY =Yy +C + N, where C has bounded variation and N is a martingale.
e Then d[X,Y]: = [M N]

Remark 9.6. Recall, all processes are implicitly assumed to be@l and |continuous. )
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Corollary 9.7. IfX is a semi-martingale and B has bounded variation then [X B] =0.



Notation. —
o d-dimensional vectors: Write = (x1,...,24) € I}Rﬁ. p
e d-dimensional [@@ X = (Xy,...,Xyg), where eac a random variable.
o d-dimensional stochastic processes: X; = ()@d ., X@), where-each X} is a stochastic
process. o '
> For scalars (or random variables): X< denotes the i-th power of X.
> For vectors (or random random vectors): X’ denotes the i-th coordinate of X.
> There is o ambiguity (can’t take powers of vectors, or coordinates of scalars)
o Alternate notation used in many books: Use X (¢) for the d-dimensional stochastic process,

and X;(t) for the i-th coordinate.
¢ May sometimes write X = (X*,..., X?) for random vectors, instead of (X1,..., Xq).
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Remark 9.8

(Chain rule). [If X is a\differentiable function of ¢, then
—_— d

d(f(t, X)) = Ouf (L, Xy) dt + Z 0 f(t, X;) dX;

- i=1

Remark 9.9 (Notation). 9,f = %L,

‘(§ - %@5 2 e P{k

4 O B ) db % al T
M@%X’“D = U \M T \Qc)x)cy o



A 5 m

4

g 1, 4 oLy

: LX) I
TR G ER A A

L

o
(

74 )= ) ¢ % afuy) £

)



Theorem 9.10 (Multi-dimensional 1t6 formula).

e Let X be a d-dimensional 16 process. Xy = (X ..., X9,
o Let f f(t,z) be a function that’s deﬁned fort €1 R x € Rd
e Suppose f € CY2. That is:

> f is ance differentiable i

> f is tﬁcé in each coordinate x; (sm,lwl«g 3 ; %) [

> All the above partial derwatwes are continuous. T en: QYJWX '
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Remark 9.11 (Integral form of Itd’s formula).
F(T, X1) — £(0,X0) = /6tftXtdt+Z/@ftXt ) dxXP
+ = Z ad F(t, Xy) d[X7, X7,

Remark 9.12. As with the 1D It6, will drop the arguments Et/\? Remember they are there.
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Intuition behind Theorem 9.10.
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To use the d-dimensional It6 formula, we need to|\compute joint quadratic variations.

Proposition 9.13. Let M, N be continuous martingales, with Ei/[f < o0 and EN}? < 0.

(1) MN — [M,N] is also a continuous martingale.

(2) Conversmw— B is a continuous martingale for some continuous adapted,
bounded variation process B with By = 0, then
Proof.
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Proposition 9.14. (1) (Symmetry) [X,Y] = [Y, X]
(2) (Bi-linearity) If@ R, X,Y, Z are semi-martingales, [X,Y +aZ] = [X,Y]+a[X, Z].
Proof.
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Proposition 9.15. Let M, N be two martingales, o, T two adapted processes.
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t
o Let Xt / s dM and Yt / Ts dN
Remark 9.16. Alternately, 1f\dXt = o dM; and[dY} = 7: dN¢| then d[X,Y]s = oy d[M, N]s.
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Propo V7. If M, N are kontinuous martingalesk EM? < 0, EN? < 0o and M.N

are {independent, then M N]=0.
Remark 9.18 ( Warnlng Independence implies E(M;N;) = EM;EN,. But it does not imply

E (MNy) = E.M;E,N,. So you can’t use this to show MN is a martingale, and hence
conclude [M, N| = 0 W 4_2  FALE
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Remark 9.19. [M, N] = 0 does not imply M, N are independent. For example:
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Definition 9.20 (d-dimensional Brownian motion). We say a d-dimensional process W =
(W1, ...,W4) is a Brownian motion if:

(1) Each coordinate W* is a standard 1-dimensional Brownian motion.

(2) For i # j, the processes Wt and W7 are independent.

- dt i=j,
Remark 9.21. If W is a d-dimensional Brownian motion then|d[W*, W], = {(;:lt » ]
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Theorem 9.22 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.
S a i=j,
(2) The joint quadratic variation satisfies: d(W*, W], = { .,
— Odt i#7j.
Then M 1is a d-dimensional Brownian motion.

Proof. Find Ese’\Mti"’“Mtj using It6’s formula, similar to Problem 7.5.



Ezample 9.23. Let f € C12 W be a d-dimensional Brownian motion, and set X; = f (¢, W;).
Find the Itdé decomposition of X.



Question 9.24. Let W be a 2-dimensional Brownian motion. Let X; = In(|W;]?) =
In((WhH)?2 + (W2)?). Is X a martingale?



10. Risk Neutral Pricing

Goal.

e Consider a market with a bank and one stock.

e The interest rate R, is some adapted process.

o The stock price satisfies dS; = a4 Sy dt + 0+S; dW;. (Here «, o are adapted processes).
¢ Find the risk neutral measure and use it to price securities.

Definition 10.1. Let D; = exp(— fot R ds) be the discount factor.

Remark 10.2. Note ;D = —R;D;.
Remark 10.3. D, dollars in the bank at time 0 becomes $1 in the bank at time ¢.



Theorem 10.4. The (unique) risk neutral measure is given by dP = Zp dP, where

T T .
ZT:exp<—/ 9tth—%/ 0t2dt)7 at:M
0 0

Ot

Theorem 10.5. Any security can be replicated. If a security pays Vi at time T, then the

arbitrage free price at time t is
1 -~
Vi=—FE,(DpVyp).
= - Bi(DrVr)
Remark 10.6. We will explain the notation dP = Zp dP and prove both the above theorems
later.



Definition 10.7. We say P is a risk neutral measure if:
(1) Pis equivalent to P (i.e. P(A) =0 if and only if P(A) = 0)
(2) D.S; is a P martingale.
Remark 10.8. As before, if P is a new measure, we use E to denote expectations with respect
to P and E; to denote conditional expectations.
Ezxzample 10.9. Fix T > 0. Let Z7 be a Fpr-measurable random variable.
e Assume Zr >0 and EZr = 1.

o Define P(A):E(ZTlA):/ Zp dP.
A

o+ Can check EX = E(ZrX). That is / XdP = | X ZpdP.
Q Q

« Notation: Write dP = Zy dP.
Lemma 10.10. Let Z, = E,Zr. If X, is Fi-measurable, then E;X = Z%ES(ZtXt).

Proof. You will see this in the proof of the Girsanov theorem in part 2 of this course. [



Theorem 10.11 (Cameron, Martin, Girsanov). Fiz T > 0, and define:
e by = (b},...,b%) a d-dimensional adapted process.

e W a d-dimensional Brownian motion.

o Wy =W+ [} byds (i.e. AW, = by dt + dW, ).

e dP = Zy dP, where

t 1 st
Zy = exp(—/ by - dW, — 5/ |bs|2ds) )
0 0

If Z is a martingale, then P is an equivalent measure under which W is a Brownian motion
up to time T



