
Suntty with pargoff $V_{I}=\underline{g\left(S_{T}\right)}$ at time I
B.S.M. PLE: $\quad \partial_{t f} f+r \times \partial_{x f} f+\frac{\sigma^{2}}{2} x^{2} \partial_{x}^{2} f=r f$

$$
\text { T.C.: } \quad \underline{\underline{f}}(I, x)=\underline{g}(x)
$$

$A B \cdot C$.
hat thene: (1) If $x_{t}=f\left(t, s_{t}\right)$ is the wealle of the rop farffolio, then of solves the B.S.M PDE (with $B C$ \& $T \cdot C \cdot f(T, x)=g(x)$)
(2) Comeneng if f solues the $\widehat{\text { BSM PDE }}$ (\& B.C. \&T.C) Thu the scuaty can le rophicaled \& $X_{t}=f\left(t, S_{t}\right)$ is the wealle of the R. pant.

Proof of Theorem 8.4. Last time;
Choose $X_{0}=\underline{f\left(0, S_{0}\right)}$ Lat $X_{t}=$ wealth of a
Chare $\Delta_{t}=\underbrace{\partial_{\times f}\left(t, S_{t}\right)}_{\uparrow}$ sill intial capital X_{0}
\& Latols Δ_{λ} shews of stark at time t.

Sot $Y_{t}=e^{-r t} X_{t} \quad\left(\operatorname{Reall} d X_{t}=\Delta_{t} d S_{t}+r\left(X_{t}-\Delta_{t} s_{t}\right) d t\right)$
Comptle $d y_{t}=$ Laot hane $=d\left(e^{-r t} f\left(t, s_{.}\right)\right)$

$$
\begin{aligned}
& \Rightarrow d\left(y_{t}-e^{-r t} f\left(t, s_{t}\right)\right)=0 \\
& \Rightarrow y_{t}-e^{-r t} f\left(t, s_{t}\right)-\left(y_{0}-f\left(0, s_{0}\right)\right)=\int_{0}^{t} 0 d t+\int_{0}^{t} 0 d \omega=0 \\
& \Rightarrow e^{-r t} X_{t}-e^{-r t} f\left(t, s_{t}\right)=X_{0}-f\left(0, s_{0}\right)=0\left(\text { by chice } f X_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow X_{t}=f\left(t, s_{t}\right) \\
& \Rightarrow \underset{\underline{X_{T}}}{ }=f\left(T, S_{T}\right)=g\left(S_{T}\right)-{\underset{V}{T}}_{V_{T}}=\text { faydylf of } \\
& \Rightarrow X=\text { wealth of the op pout. } \\
& \Rightarrow f\left(t, S_{t}\right)=\uparrow \\
& \text { QED }
\end{aligned}
$$

Proof of Theorem 8.4 (without discounting).
$S_{\text {lat }}$ wi (1) $X_{0}=f\left(0, S_{0}\right)$
(2) Chan $\Delta_{t}=\partial_{x} f\left(t, S_{t}\right) \quad$ (Delta Heelging)

Want To Show: X is a rep part \& $X_{t}=f\left(t, s_{t}\right)$
(1) By of of self fin: $d X_{t}=c_{t} d S+\underline{\underline{p}}\left(X_{t}-\Delta_{t} S_{t}\right) d t$

$$
\Rightarrow d X_{t}=\Delta_{t}\left(\alpha S d t+\sigma S_{0} d \omega\right)+r\left(X_{t}-\Delta_{t} S_{t}\right) d t
$$

$$
\begin{aligned}
& \text { (*) } \Rightarrow d X_{t}=\sigma S\left(\Delta_{t}>^{2 f\left(t, S_{t}\right)} d W_{t}+\left(r X_{t}+(\alpha-r) \Delta_{t} S_{t}\right) d t\right. \\
& \text { (2)BgIN: } d \overbrace{f\left(t, S_{t}\right)}^{S_{t}}=\partial_{t f} d t+\partial_{x f} d S+\frac{1}{2} \partial_{x}^{2} f d[S, S] \\
& =\partial_{\underline{f}} f d t+\partial_{x f}(\underline{\underline{\alpha}} S \underline{d t}+\sigma S d \omega)+\frac{1}{2} \partial_{x}^{2} f S^{2} \sigma^{2} d t
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow d y_{t}=\left((\underline{\alpha}-r) s \partial_{x} f+\tau f\right) d t+\Delta_{t}+s d \omega \\
& \left(U_{\sin } \partial_{t f}+r \times \partial_{\times} f+\frac{\sigma^{2}}{2} \times \partial_{\times f}^{2} f=r f\right) \\
& \Rightarrow d\left(x_{t}-y_{t}\right)=r\left(x_{t}-\frac{f\left(t, s_{t}\right)}{t_{t}}\right) d t+O d w \\
& \Rightarrow d\left(x_{t}-y_{t}\right)=r\left(x_{t}-y_{t}\right) d t
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Rightarrow & \partial_{t}\left(X_{t}-Y_{t}\right)=r\left(X_{t}-Y_{t}\right) \\
\Rightarrow & X_{t}-Y_{t}=\left(X_{0}-Y_{0}\right) \cdot e^{r t} \\
=\left(X_{0}-f\left(0, S_{0}\right)\right) e^{r t}=0
\end{array}\right\} \Rightarrow X_{t}=Y_{t} \quad=f\left(t, S_{t}\right) .
$$

$\Rightarrow X$ is the balt of the Rip Pat $k X_{t}=f\left(t, s_{t}\right)$

QED.

Remark 8.12. The arbitrage free price does not depend on the mean return rate!

$$
\begin{aligned}
G B D M_{T} \quad d S_{t} & =\underbrace{\alpha}_{\text {M }} S d t+\sigma S d \omega \\
& \text { Mean nate note. }
\end{aligned}
$$

Question 8.13. Consider a European call with maturity T and strike K. The payoff is $V_{T}=\left(S_{T}-K\right)^{+}$. Our proof shows that the arbitrage free price at time $t \leqslant T$ is given by $V_{t}=c\left(t, S_{t}\right)$, where c is defined by (8.5). The proof uses Itô's formula, which requires c to be twice differentiable in x; but this is clearly false at $t=T$. Is the proof still correct?

$$
\begin{aligned}
& V_{T}=\left(S_{T}-k\right)^{t}=g\left(S_{T}\right) \text {, whence } g(x)=(x-k)^{t} \\
& \text { Q: Is g d/fo (NO) } \\
& 6 \text { values BSM PDE } \\
& \text { ThC. } \quad f(T, x)=g(x)=(x-k)^{+} \\
& \text {(nat diff) }
\end{aligned}
$$

$$
f(t, n) \quad \text { for } \quad t<T
$$

for $t<T$: f is diff (twice in x can ably If or
 My prof will show $X_{t}=f\left(t, C_{t}\right)$ for all $t<T$ take $\lim _{t \rightarrow T} \&$ get $X_{T}=f\left(T, S_{T}\right)$

Proposition 8.14 (Put call parity). Consider a European put and European call with the same strike K and maturity T.
$\triangleright c\left(t, S_{t}\right)=A F P$ of call (given by (8.5))
$\triangleright \underline{p}\left(t, S_{t}\right)=A F P$ of put.
Then $c(t, x)-p(t, x)=x-K e^{-r(T-t)}$, and hence $p(t, x)=K e^{-r(T-t)}-x-c(t, x)$.

$$
\left[\begin{array}{rl}
\text { Kan } & c(t, x)
\end{array} \quad=x N\left(d_{t}\right)-k e^{-r(T-t)} N(d)\right\}
$$

8.3. The Greeks. Let $c(t, x)$ be the arbitrage free price of a European call with maturity T and strike K when the spot price is x. Recall

$$
c(t, x)=x N\left(d_{+}\right)-K e^{-r \tau} N\left(d_{-}\right), \quad d_{ \pm} \stackrel{\text { def }}{=} \frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad \tau=T-t
$$

Definition 8.15. The delta is $\partial_{x} c$.
Remark 8.16 (Delta hedging rule). $\Delta_{t}=\partial_{x} c\left(t, S_{t}\right)$.
Proposition 8.17. $\partial_{x} c=N\left(d_{+}\right)$

$$
\begin{aligned}
\partial_{x} c & =\partial_{x}\left({ }_{=}^{\eta} N\left(d_{t}\right)-k e^{-\uparrow \tau} N\left(d_{-}\right)\right) \\
& =N\left(d_{t}\right)+x N^{\prime}\left(d_{t}\right) \cdot d_{t}^{\prime}-k e^{-\uparrow \tau} N^{\prime}\left(d_{-}\right) d^{\prime}
\end{aligned}
$$

1

$$
\begin{aligned}
d_{ \pm}^{\prime} & =\partial_{x}\left(\frac { 1 } { \sigma \sqrt { \tau } } \left(\ln \left(\frac{x}{k}\right)+\left(\tau^{\left. \pm \frac{r^{2}}{2}\right) \tau}\right)\right.\right. \\
& =\frac{1}{x \sigma \sqrt{\tau}}
\end{aligned}
$$

(2) $N(x)=\int_{-\infty}^{x} e^{-x^{2} / 2} \frac{d y}{\sqrt{2 \pi}} \Rightarrow N^{\prime}(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$
(3) $d_{t}^{2}-d^{2} ;$

$$
\left.\begin{array}{rl}
d_{ \pm} & =\frac{1}{\sigma \sqrt{t}}\left(\ln \left(\underline{\frac{x}{k}}\right)+r \tau\right. \\
\pm \frac{\pi}{2}_{2}^{2}
\end{array}\right)
$$

$$
\text { Hene } \begin{aligned}
\partial_{x} c & ==N\left(d_{+}\right)+x N^{\prime}\left(d_{+}\right) \cdot d_{+}^{\prime}-k e^{-\tau \tau} N^{\prime}\left(d_{-}\right) d_{-}^{\prime} \\
& =N\left(d_{+}\right)+d_{t}^{\prime}\left[x \frac{e^{-d_{+/ 2}^{2}}}{\sqrt{2 \pi}}-k e^{-\tau \tau} \frac{e^{-d_{-}^{2} / 2}}{\sqrt{2 \pi}}\right] \\
& =N\left(d_{+}\right)+\frac{d^{\prime}}{\sqrt{2 \pi}}\left(x e^{-d_{+}^{2} / 2}-k e^{-r \tau} e^{-d_{+/ 2}^{2}} \frac{x}{k} e^{+\pi \tau}\right) \\
& =N\left(d_{+}\right)
\end{aligned}
$$

Definition 8.18. The Gamma is $\partial_{\underline{x}}^{2} c$ and is given by $\partial_{x}^{2} c=\frac{1}{x \sigma \sqrt{2 \pi \tau}} \exp \left(\frac{-d_{+}^{2}}{2}\right)$.

$$
\partial_{x}^{2} c=\partial_{x} \partial_{x} c=\partial_{x}\left(N\left(d_{t}\right)\right)=\omega^{\prime}\left(d_{t}\right) d_{t}^{\prime}
$$

strictly
Proposition 8.20. (1) c is increasing as a function of x.
(2) c is convex as a function of x.
$\sqrt{(3)} c$ is decreasing as a function of t.
(1) c inc as a n of x mems $c(t, y)>c(t, x)\}$
$(P): \partial_{x} c>0 \Rightarrow c$ is ime as a an of x whenever $y>x$
d

$$
\partial_{x} c=W\left(d_{t}\right)>0
$$

(2) Gurex:

A f_{n} is connex if
Cheok: Is a con
thentine is inc x ?
(i.e. the second dinvintive >0) i.e. Is $\partial_{x}^{2} c>0$?

$$
\partial_{\lambda}^{2} c=C_{\text {ama } x}=\frac{1}{n \sigma \sqrt{2 \pi \tau}} e^{-d_{t / 2}^{2}}>0
$$

(3) c is decreasing as a fr of time (Cheis $\partial_{t} c=$ Thata $=$ famber <0)

Remark 8.21. To properly hedge a short call, you always borrow from the bank. Moreover $\Delta_{T}=1$ if $S_{T}>K, \Delta_{T}=0$ if $S_{T}<K$.

Delta Hedging: $\Delta_{t}=$ \# shores in Rep pout of fine t

$$
=\partial_{x} c\left(t, S_{t}\right)
$$

\Rightarrow Cen Balms: $c\left(t, S_{t}\right)-\partial_{x}\left(t, S_{t}\right) S_{t} \quad(\tau=T-t)$
Pat $x=s_{t}: \quad c(t, x)-x \partial_{x} c(t, x)=x \cot \left(d_{+}\right)-k e^{-r i} N(d)-x(1)\left(d_{+}\right)$ $=-k e^{-r \tau} N\left(d_{-}\right)<0$

$$
\begin{aligned}
& \Delta_{t} \xrightarrow{t \rightarrow T} \begin{cases}1 & s_{T}>k \\
0 & s_{T}<k\end{cases} \\
& \text { (Compule } \overbrace{t \rightarrow T} \partial_{x} c(t, x)= \begin{cases}1 & x>k \\
0 & x<k \\
1 / 2 . & x=k\end{cases} \\
& \text { You iwhe. }
\end{aligned}
$$

Remark 8.22 (Delta neutral, Long Gamma). Say x_{0} is the spot price at time t.

- Short $\partial_{x} c\left(t, x_{0}\right)$ shares, and buy one call option valued at $c\left(t, x_{0}\right)$.
- Put $M=x_{0} \partial_{x} c\left(t, x_{0}\right)-c\left(t, x_{0}\right)$ in the bank.
- What is the portfolio value when if the stock price is x (and we hold our position)?
$\triangleright($ Delta neutral $)$ Portfolio value $=c(t, x)-$ tangent line.
\triangleright (Long gamma) By convexity, portfolio value is always non-negative.

$$
x_{0}=\text { Stat price of stacte }
$$

Portfolio $\begin{cases}-\partial_{x} c\left(t, x_{0}\right) & \text { sprues } \\ 1 & \text { call anion. }\end{cases}$
Portfolio value if spec price is a

$$
\begin{aligned}
& =c(t, x)-x \partial_{x} c\left(t, x_{0}\right)+M \\
& =c(t, x)-x \partial_{x} c\left(t, x_{0}\right)+x_{0} \partial_{x} c\left(t, x_{0}\right)-c\left(t, x_{0}\right) \\
& =c(t, x)-\{\underbrace{c\left(t, x_{0}\right)+\left(x-x_{0}\right) \partial_{x} c\left(t, x_{0}\right)}_{\text {- avgait line to } c(t, x) \text { at } x_{0}}\}
\end{aligned}
$$

