7. Review Problems
$W \rightarrow$ ad $B \cdot M$
Problem 7.1. If $0 \leqslant r \leqslant s \leqslant t$, find $\boldsymbol{E}\left(W_{s} W_{t}\right)$ and $\boldsymbol{E}\left(W_{r} W_{s} W_{t}\right)$.

$$
\begin{aligned}
E\left(W_{s} W_{t}\right) & =s \wedge t \quad(\min \{s, t\}) \\
& =s
\end{aligned}
$$

$$
\begin{gathered}
=S \\
\left(\text { Sal 1: } E\left(\omega_{S} W_{t}\right)^{\text {tor }}=E^{\nabla} E_{S}\left(\omega_{S} \omega_{t}\right)=E\left(\omega_{S} \tilde{E}_{s} \omega_{t}\right)\right.
\end{gathered}
$$

$$
=E\left(W_{S} W_{S}\right)=S \quad\left(W_{S} \sim N(0, s)\right)
$$

$$
\begin{aligned}
& \text { Sal 2: } \\
& E W_{s} W_{t}=E W_{s}\left(W_{s}+W_{t}-W_{s}\right) \\
& \begin{array}{l}
=E W_{s}^{2}+\underbrace{E W_{s}\left(W_{t}-W_{s}\right)}_{0} \\
=\left(\because \omega_{t}-W_{s} \text { is ind of } W_{s}\right.
\end{array} \\
& \left.\omega_{t}-\omega_{s} \sim N(0, t-s)\right) \\
& \text { Compatic } E\left(W_{r} W_{s} W_{t}\right) \\
& r \leqslant s \leqslant t
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(W_{r} E_{s}\left(W_{s} W_{t}\right)\right) \\
& =E\left(W_{r} W_{s} E_{s} W_{t}\right)=E\left(W_{r} W_{s}^{2}\right) \\
& =E E_{r}\left(W_{r} W_{s}^{2}\right)=E\left(W_{r} E_{r} W_{s}^{2}\right) \\
& =E\left(W_{r} E_{r}\left(W_{s}^{2}-s+s\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(W_{r}\left(W_{r}^{2}-r+s\right)\right)\left(\because W_{s}^{2}-s \text { is a mg }\right) \\
& =E W_{r}^{3}+E W_{r}(s-r)=0
\end{aligned}
$$

Problem 7.2. Define the processes X, Y, Z by

$$
X_{t}=\int_{0}^{W_{t}} e^{-s^{2}} \underline{d s}, \quad Y_{t}=\exp \left(\int_{0}^{t} W_{s} \underline{d s}\right), \quad Z_{t}=t X_{t}^{2}
$$

Decompose each of these processes as the sum of a martingale and a process of finite first variation. What is the quadratic variation of each of these processes?

1 Ware $X=X_{0}+\mathrm{Ln}_{B V}^{M}+\underbrace{M}_{M g}$
Usual streiegn: $X_{t}=f\left(t, W_{t}\right)$ \& apply Ito

$$
d x=(\quad) d t+() d w
$$

$$
\begin{aligned}
& \text { Let } f(t, x)=\int_{0}^{x} e^{-s^{2}} d s \Rightarrow X_{t}=f\left(t, \omega_{t}\right) \\
& \partial_{f} f=0 \\
& \partial_{x} f=e^{-x^{2}}(\text { FTC) } \\
& \partial_{x}^{2} f=-2 x e^{-x^{2}}\left(U_{\text {ana mall }}\right)
\end{aligned}
$$

$$
\begin{gathered}
d X_{t}=d f\left(t, x_{t}\right)=\partial_{t f} d t+\partial_{x f} d \omega+\frac{1}{2} \partial_{x}^{2} f \underbrace{[\omega, \omega]}_{d t} \\
=0 d t+e^{-\omega_{t}^{2}} d \omega-\frac{1}{2} 2 \omega_{t} e^{-\omega_{t}^{2}} d t \\
=\left(-\omega_{t} e^{-\omega_{t}^{2}} d t\right)+\left(e^{-\omega_{t}^{2}} d \omega_{t}\right)
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow X_{(t)}=X_{0}+\int_{0}^{t}-\omega_{s}^{t} e^{-\omega_{s}^{2}} \underbrace{d s}_{s}+\int_{0}^{t} e^{-\omega_{T}^{2}} d \omega_{r} \\
X_{0}=0 \quad \underbrace{t}_{t}=-\int_{0}^{\omega_{s}} e^{-\omega_{s}^{2}} l_{s} \\
M=\int_{0}^{t} e^{-\omega_{r}^{2}} \tau \omega_{r}
\end{gathered}
$$

$$
\begin{aligned}
& \left.Y_{t}=\operatorname{eat}\left(\int_{0}^{t} w_{s}^{(}\right){ }_{c}^{d s}\right) \leftrightarrows \text { alnoly a diff for of } t \\
& \text { Wode } g(t)=\int_{0}^{t} W_{s} d_{s} \rightarrow \text { diff for of } t \\
& y_{t}=y_{m}+\underbrace{\left(y_{t}-y_{0}\right)}_{\text {finte it inave }}+0
\end{aligned}
$$

$$
z_{t}=f\left(t, x_{t}\right), \quad f(t, x)=t x^{2}
$$

\& Juat Ito to decompue Z

Problem 7.3. Define the processes X, Y by \square

(1) $E \int_{0}^{t_{s}^{t}} \omega_{s} d s$

$$
X_{t} \stackrel{\text { def }}{=} \int_{0}^{t} W_{s} d s, \quad Y_{t} \stackrel{\text { def }}{=} \int_{0}^{t} W_{s} d W_{s}
$$

$\ell^{\text {Nad tan }}$

Rieven int

$$
E \int d t=\int E d t
$$

$$
\begin{aligned}
& =\int_{0}^{s} E_{s} \omega_{r} d r+\int_{s}^{t} E_{s} \omega_{r} d r \\
& =\int_{0}^{0} W_{r} d r+\int_{s}^{t^{s}} W_{s} d r
\end{aligned}
$$

$$
=\int_{0}^{s} w_{r} d r+w_{s}(t-s)
$$

(2) $Y_{t}=\int_{0}^{t} w_{1} d \omega_{s}$. Find E_{t} \& $E_{s} Y_{t}$
(a) $E \int_{M_{g}}^{\int_{0}^{t} w_{s} d w_{s}}=\int_{0}^{0} w_{s} d w_{s}=0$
(6) $E_{s} y_{t}=E\left(y_{t} \mid \xi_{s}\right)=E_{s} \int_{0}^{t} \omega_{r} d \omega_{r}$

$$
M_{g} \int_{0}^{s} w_{s} d w_{s}
$$

Ito intega's ane Mg^{\prime} s
QV of $\int_{0}^{t} \sigma_{s} d W_{s}$ is $\int_{0}^{t} \sigma_{s}^{2} d s \left\lvert\, \begin{aligned} & E\left(\int_{0}^{t} \sigma_{s} d W_{s}\right)^{2} \\ & \text { Itosem sam } E \int_{0}^{t} \sigma_{s}^{2} d s\end{aligned}\right.$

Problem 7.4. Let $\underline{M}_{t}=\int_{0}^{t} W, d W_{s}$. Find a function f such that

$$
\mathcal{E}(t) \stackrel{\text { def }}{=} \exp \left(M_{t}-\int_{0}^{t} f\left(s, W_{s}\right) d s\right)
$$

is a martingale.

$$
\begin{aligned}
& \text { Let } g(t, x)=\exp \left(x, \int_{0}^{t} f\left(s, W_{s}\right) d s\right) \\
& \varepsilon(t)=g\left(t, M_{t}\right) \quad(1) \partial_{t g}=\exp () \cdot\left(-f\left(t, \omega_{t}\right)\right) \\
& \left(2 \partial_{x} g=\exp () 1\right.
\end{aligned}
$$

(3) $\partial_{\lambda}^{2} g=\exp () \cdot 1$

$$
\begin{aligned}
& \text { (4)d[M,M] }=\omega_{t}^{2} d t \\
& \Rightarrow d \varepsilon(t)= \\
&=\partial_{t f} d t+\partial_{x} f d M+\frac{1}{2} \partial_{x}^{2} f d[M, M] \\
&= \varepsilon(t)\left[-f\left(t, \omega_{t}\right)\right] d t+\varepsilon(t) \omega_{t} d \omega_{t}+ \\
&+\frac{1}{2} \varepsilon(t) \omega_{t}^{2} d t
\end{aligned}
$$

$$
=\varepsilon(t) \underbrace{-\delta\left(t, \omega_{t}\right)+\frac{1}{2} \omega_{t}^{2}}] d t+\varepsilon(t) \omega_{t} d W_{t}
$$

Chaere of so hat the dt temn varishes

$$
\Rightarrow f(t, x)=\frac{x^{2}}{2} \text { i.e } \varepsilon(t)=\exp \left(\int_{0}^{t} w_{c} d \omega_{s}-\frac{1}{2} \int_{0}^{t} w_{s}^{2} d s\right)
$$

is h mg

Problem 7.5. Suppose $\sigma=\widehat{\sigma}_{t}$ is a deterministic (i.e. non-random) process, and M is a martingale such that $d[M, M]_{t}=\sigma_{t}^{2} d \overline{t .}\left(S o y M_{0}=0\right)$

(1) Given $\lambda, s, t \in \mathbb{R}$ with $0 \leqslant s<t$ compute $\boldsymbol{E} e^{\lambda M_{t}}$ and $\boldsymbol{E}_{s} e^{\lambda M_{t}-M_{s}}$
(2) If $r \leqslant s$ compute $\boldsymbol{E} \exp \left(\lambda \underline{\underline{M}}_{r}+\mu\left(M_{t}-M_{s}\right)\right.$.
(3) What is the joint distribution of $\left(M_{r}, M_{t}-M_{s}\right)$?
(4) (Lévy's criterion) If $d[M, M]_{t}=d t$, then show that M is a standard Brownian motion.

$$
\begin{gathered}
f(t, x)=e^{\lambda x} \quad \partial_{t} f=0, \quad \partial_{x} f=\lambda e^{\lambda x}, \partial_{x}^{2} f=\lambda^{2} e^{\lambda x} \\
d[M, M]=\sigma_{t}^{2} d t
\end{gathered}
$$

$$
\text { Let } \begin{aligned}
\underline{\varphi(t)} & =E e^{\lambda M_{t}} \\
d\left(e^{\lambda M_{t}}\right) & =I_{0} \\
& =0+\lambda e^{\lambda M_{t}} d t+\partial_{x} f d M+\frac{1}{2} \partial_{x}^{2} f d[M, M] \\
& \lambda^{2} e^{\lambda M_{t}} \sigma_{t}^{2} d t
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e^{\lambda M_{t}}-\underbrace{e^{\lambda M_{0}}}_{1}=\lambda \int_{0}^{t} e^{\lambda M_{s}} d_{s}+\frac{1}{2} \lambda^{2} \int_{0}^{t} e^{\lambda M_{s}} \sigma_{s}^{2} d s
\end{aligned}
$$

$$
\begin{aligned}
\varphi(t) & =E e^{\lambda \mu_{t}} \\
& \Rightarrow \varphi(t)=1+0+\frac{1}{2} \lambda^{2} \int_{0}^{t} \varphi(s) \sigma_{s}^{2} d s \\
& \Rightarrow \varphi^{\prime}(t)=\frac{\lambda^{2}}{2} \varphi(t) \sigma_{t}^{2} \\
& \Rightarrow \frac{\varphi^{\prime}}{\varphi}=\frac{\lambda^{2}}{2} \sigma_{t}^{2} \Rightarrow \frac{d}{d t}(\ln \varphi)=\frac{\lambda^{2}}{2} \sigma_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \underbrace{\ln \varphi(t)-\ln (\varphi(0))}_{\ln \left(\frac{\varphi(t)}{\varphi(0)}\right)}=\frac{\lambda^{2}}{2} \int_{0}^{t} \sigma_{s}^{2} d s \\
& \Rightarrow \varphi(t)= \\
& \varphi(0) \exp \left(\frac{\lambda^{2}}{2} \int_{0}^{t} \sigma_{s}^{2} d s\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \underbrace{\underbrace{}_{t}}_{M_{g} \text { of }_{t}^{E} e^{\lambda M_{t}}=1 \cdot \underbrace{\exp \left(\frac{\lambda^{2}}{2} \int_{0}^{t} \sigma_{s}^{2} d s\right)}_{M_{g t} \text { of } N\left(0, \int_{0}^{t} \sigma_{s}^{2} d s\right)}} \\
& \Rightarrow M_{t} \sim N\left(0, \int_{0}^{t} \sigma_{s}^{2} d_{s}\right)
\end{aligned}
$$

Uce the same trick to courtite

$$
\begin{aligned}
& E_{S} e^{\lambda\left(M_{t}-M_{s}\right)} \\
& E_{s} e^{\lambda M_{t}}-e^{\lambda M_{S}}=\lambda E_{s} \int_{S}^{t} e^{\lambda M_{r}} d M_{r}+\frac{1}{2} \lambda^{2} E_{s} \int_{S}^{t} e^{\lambda M_{s}} \sigma_{s}^{2} d \& r \\
& \text { het } \quad \frac{E_{s}}{E} e^{\lambda\left(M_{t}-M_{s}\right)}=\operatorname{eap}\left(\frac{\lambda^{2}}{2} \int_{s}^{t} \sigma_{r}^{2} d r\right) \leftarrow M_{G F} \text { of maml. }
\end{aligned}
$$

(souls like $M_{t}-M_{s}$ shall the ind of f_{S}).
 (for all λ, μ).

Lets compure $E\left(e^{\lambda M_{r}+\mu\left(M_{t}-M_{s}\right)}\right) \quad(r \leqslant s \leq t)$

$$
\begin{aligned}
& =\mathbb{E} \mathbb{E}_{S}(\\
& =\mathbb{E} E_{S}\left(e^{\lambda M_{r}} e^{\mu\left(M_{t}-M_{s}\right)}\right)-\mathbb{E}(e^{\lambda M_{r}} \underbrace{E_{S} e^{\mu\left(M_{t}-M_{c}\right)}})
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(e^{\lambda \mu_{r}} \cdot e^{\frac{\mu^{2}}{2}} \int_{s}^{t} r_{u}^{2} d u\right) \\
& =e^{\frac{\lambda^{2}}{2} \int_{0}^{r} \sigma_{n}^{2} d x+\frac{n^{2}}{2} \int_{c}^{t} \sigma_{n}^{2} d n} \\
& =M G I \text { of a } 2 D \text { namal moer } 0 \\
& \& C_{\text {arvice }}\left(\begin{array}{ll}
\int_{0}^{-} \sigma_{n}^{2} d x & 0 \\
0 & \int_{-0}^{t} \sigma_{n}^{2} d x
\end{array}\right)
\end{aligned}
$$

$\Rightarrow M_{t}-M_{s}$ is ind of M_{r}
If
$\left.\begin{array}{rl}\text { Let } r=1 & M_{t}-M_{S} \sim N(0, t-s) \\ \text { \& inst of } f_{s}\end{array}\right\} \Rightarrow M_{\text {is }}$.

Problem 7.6. Define the process X, Y by

$$
\rightarrow X=\int_{0}^{t} \underline{s} d W_{s}, \quad Y=\int_{0}^{t} \underline{W}_{s} d s
$$

Find a formula for $\boldsymbol{E} X_{t}^{n}$ and $\boldsymbol{E} Y_{t}^{n}$ for any $n \in \mathbb{N}$.
Claim: Both X ane Normal!

$$
x_{t}=\lim
$$

h
Linear continfion of Nomlay!

To fiond $E X_{t}^{n}$ juot foul $E X_{t} \& E X_{t}^{2}$
\& were the foula so mails of Nomana RV's.

$$
\begin{aligned}
& E X_{t}=E \int_{0}^{t} s d W_{s}=0 \\
& E X_{t}^{2}=E\left(\int_{0}^{t} s d W_{s}\right)^{2} \xlongequal[=]{I_{0} I_{s o m}} E \int_{0}^{t} s^{2} d s=\frac{t^{3}}{3}
\end{aligned}
$$

Sume fo Y:

$$
\Rightarrow Y \text { is Nounl. }
$$

$$
\begin{aligned}
(1) E Y_{t} & =E \int_{0}^{t b} W_{s} d s=\int_{0}^{t} E w_{s} d s=0 \\
\left(2 E Y_{t}^{2}\right. & =E\left(\int_{0}^{t} w_{s} d s\right)^{2}=E\left(\int_{0}^{t} w_{s} d s\right)\left(\int_{0}^{t} w_{r} d s s_{r}\right) \\
& =E\left(\int_{0}^{t} w_{s} d s \int_{0}^{t} w_{r} d r\right)=E \int_{s=0}^{t} \int_{r=0}^{t} w_{s} w_{r} d s d r
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{s=0}^{t} \int_{r=0}^{t} E\left(W_{s} W_{r}\right) d s d r \\
& =\int_{s=0}^{t} \int_{r=0}^{t}(s \wedge r) d s d r \quad \& \text { intequite } 0_{0}
\end{aligned}
$$

het Moan \& Vaviae \& we MGF of Nomal bo find all norts!

