host time: if V_{av} : $V_{[0,T]} \times =\lim_{N \to \infty} \overline{2} |\Delta; X| \circ T$ |P|(=0) = 1 $\Delta_{i,X} = X_{t_{i+1}} - X_{t_{i}}$ Nad V X < 0

Quad while Var :

in och to defre Rieran Int

 $[X, X]_{T} = \lim_{\|P\| \to 0} \sum_{i=0}^{m-1} (\Delta_{i} X)^{2}$

 $S_{anv} \left[W, W \right]_{T} = T$ $(\mathbf{a}, \mathbf{c}, \mathbf{c})$

	12							
-	$\left(\right)$	 $\int U U D$	_	1.)	_+	10		
	VV_	L^{ω} , ω_{\perp}	0	W_	- 6	ig	6	ma
	-0	í t		-6				

Theorem 6.11. Let M be a continuous martingale.

- (1) $\mathbf{E}M_t^2 < \infty$ if and only if $\mathbf{E}[M, M]_t < \infty$.
- (2) In this case $M_t^2 [M, M]_t$ is a continuous martingale.
- (3) Conversely, if $M_t^2 A_t$ is a martingale for any continuous, increasing process A such that $A_0 = 0$, then we must have $A_t = [M, M]_t$.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.

Remark 6.13. If X has finite first variation, then $|X_{t+\delta t} - X_t| \approx O(\delta t)$. Remark 6.14. If X has finite quadratic variation, then $|X_{t+\delta t} - X_t| \approx O(\sqrt{\delta t}) \gg O(\delta t)$. Interiore Finte 1st von ____ d'ifractiate in time → finte (non -zero) QV → Never diff

6.4. Itô Integrals. • $D_t = D(t)$ some adapted process (position on an asset). • $\underline{P} = \{ 0 = t_0 < t_1 < \cdots \}$ increasing sequence of times. • $||P|| = \max_{i}(t_{i+1} - t_{i})$ and $\Delta_{i}X = X_{t_{i+1}} - X_{t_{i}}$. W: standard Brownian motion. n-1 $\Rightarrow I_{P}(\underline{T}) \stackrel{\text{def}}{=} \sum_{i=0}^{\infty} \underline{D}_{t_{i}} \Delta_{i} W + D_{t_{n}}(W_{T} - W_{t_{n}}) \qquad i \in T \in [t_{n}, t_{n+1}]$ **Definition 6.15.** The *Itô Integral* of D with respect to Brownian motion is defined by $\int_{0}^{T} \mathcal{B} dW_{\mathcal{S}} = \prod_{T} = \int_{0}^{T} \mathcal{D}_{t} dW_{t} = \lim_{\|P\| \to 0} I_{P}(T) \cdot \mathcal{D}_{u} \text{ when bounds because}$ $nark 6.16. \text{ Suppose for simplicity } T = t_{n}.$ $(1) \text{ Riemann integrals: } \lim_{\|P\| \to 0} \sum \mathcal{D}_{\underline{\xi}_{i}} \Delta_{i} W \text{ exists, for any} \underbrace{\xi_{i} \in [t_{i}, t_{i+1}]}_{\underline{\xi}_{i}}.$ Remark 6.16. Suppose for simplicity $T = t_n$. (2) Itô integrals: Need $\xi_i = \underline{t_i}$ for the limit to exist. \mathcal{P} Need \mathcal{P} to be adapted

Theorem 6.17. If
$$\mathbf{E} \int_{0}^{T} D_{t}^{2} dt < \infty$$
 and $\mathbf{E}[I(T)^{2}] < \infty$.
(1) $I_{T} = \lim_{\|P\|\to 0} I_{P}(T)$ exists a.s., and $\mathbf{E}[I(T)^{2}] < \infty$.
(1) $I_{T} = \lim_{\|P\|\to 0} I_{P}(T)$ exists a.s., and $\mathbf{E}[I(T)^{2}] < \infty$.
(2) The process I_{T} is a martingale: $\mathbf{E}_{s}I_{t} = \mathbf{E}_{s}\int_{0}^{t} D_{r} dW_{r} = \int_{0}^{s} D_{r} dW_{r} = I_{s}$
(3) $[I, I]_{T} = \int_{0}^{T} D_{t}^{2} dt$ a.s.
(Node $\int_{0}^{T} D_{t}^{2} dt$ is a still remain I_{M})
Remark 6.18. If we only had $\int_{0}^{T} D_{t}^{2} dt < \infty$ a.s., then $I(T) = \lim_{\|P\|\to 0} I_{P}(T)$ still exists, and
is finite a.s. But it may not be a martingale (it's a local martingale).

NOTATION:
$$E\chi^2 = E(\chi^2)$$
 NOT $(E\chi)^2$

Corollary 6.19 (Itô isometry). $E\left(\int_{0}^{T} D_t dW_t\right)^2 = E \int_{0}^{T} D_t^2 dt = \int_{0}^{T} D_t^2 dt$ Proof. Re Note For Rienam Integrals $E\int_{1}^{T}D_{1}^{2}dt = \int ED_{1}^{2}dt$

 $\operatorname{Trutution}: E \int_{T} D_{t}^{2} dt \quad (\operatorname{Rievon}) = E \operatorname{Inn} \quad \forall Z \quad D_{t_{i}}^{2} (t_{i+1} - t_{i})$

 $=\lim_{|P|\to D} E \sum_{i}^{2} D_{i}^{2} (t_{iH} - t_{i})$ $= \lim_{\|P\|\to 0} \overline{Z}(EP_{t_i}^2)(t_{i+1}-t_i)$ $= \int_{-\infty}^{\infty} (F \mathcal{P}_{t}^{2}) dt$

Pf of Ito icon (Assung prop of Ito int): $k_{\text{ver}} I_{\text{f}} = \int D_{\text{s}} dW_{\text{s}} \quad \text{is a mg}$ $k[T,T]_{t} = \int_{0}^{t} D_{s}^{2} ds$ $\Rightarrow I_{\ell}^{2} - [I_{\ell}I]_{\ell}$ is a my! $\Rightarrow E(I_t^2 - [I,I]_t) = E(I_0^2 - [I,I]_0) = 0$

 \Rightarrow $EI_{t}^{2} = E[I,I]_{t}$ $\Rightarrow E\left(\int_{0}^{t} D_{s} dW_{s}\right)^{2} = E\left(\int_{0}^{t} D_{s}^{2} ds\right)$

Intuition for Theorem 6.17 (2). Check $I_P(T)$ is a martingale.

 $I_{p}(T) = \sum_{i=0}^{n-1} D_{t_{i}} (W_{i} + D_{t_{i}} (W_{T} - W_{t_{i}})) \quad i \neq T \in [t_{m}, t_{m}]$ NTS $E_s I_p(t) = I_p(s)$ for simpling support S=tm 2 t=tm, M $I_{p}(s) = I_{p}(t_{m}) = \sum_{i=1}^{m-1} D_{t_{i}} \Delta_{i} \omega$

N

M-1Wetit1 +ZEt. -W セ (Dt: E E $E_{L} (W_{L} - W)$ t. iti ti 1º: 7 - mores +:

V

Intuition: It? Isom: $E\left(\int_{0}^{T} D_{s} dW_{s}\right)^{2} = E\left(\int_{0}^{T} D_{s}^{2} dS\right)$ $\text{hol's chuke by hard}: E\left(\sum_{i=0}^{m-1} D_{t_i} \Delta_i W\right)^2 = E\sum_{i=0}^{m-1} D_{t_i}^2 \left(t_{i+1} - t_i \right)$ Expud LHS;

 $E\left(\sum_{i=0}^{n-1} D_{t_i} \Delta_i W\right)^2 = E\left(\sum_{i=0}^{n-1} D_{t_i}^2 (\Delta_i W)^2 + \right)$

 $E \stackrel{\text{M-I}}{\underset{j=D}{\rightarrow}} \stackrel{j=1}{\underset{i=0}{\rightarrow}} D_{i} \stackrel{\Delta_{i}}{\underset{j}{\rightarrow}} W \stackrel{D_{i}}{\underset{j}{\rightarrow}} \stackrel{\Delta_{j}}{\underset{j}{\rightarrow}} W$ $) = \sum_{i=0}^{h-1} E D_{t_i}^2 (\Delta_i W)^2 = \sum_{i=0}^{h-1} E E_{t_i} (D_{t_i}^2 (W_{t_i+1} - W_{t_i})^2)$ $= \sum_{i=1}^{n-1} E D_{t_i}^2 E (W_{t_i+1} - W_{t_i})^2$

 $= \sum_{i=0}^{N-1} E D_{t_i}^2 \left(t_{i+1} - t_i \right) = D_{\text{coined}} R HS.$ $(2) = 2 \sum_{j=0}^{N-1} \sum_{i=0}^{j-1} E\left(D_{t_i}(W_{t_{i+1}} - W_{t_i}) D_{t_i}(W_{t_{i+1}} - W_{t_i}) \right)$ $= 2 \sum_{j=0}^{n-1} \sum_{i=0}^{j-1} E E_{t_j} \left(\sum_{i=0}^{n-1} (W_{t_i} - W_{t_i}) \sum_{i=0}^{n-1} (W_{t_i} - W_{t_i}) \right)$

Note $i < j \rightarrow D_{t_f}$, $W_{t_{i+1}}$, N_{t_f} , D_{f_i} meas $= 2 \sum_{j=0}^{n-1} \sum_{i=0}^{j-1} E\left(\sum_{\substack{t_i \\ t_i \\$

Proposition 6.20. If $\alpha, \tilde{\alpha} \in \mathbb{R}$, D, \tilde{D} adapted processes

$$\int_{0}^{T} (\alpha D_{s} + \tilde{\alpha} \tilde{D}_{s}) dW_{s} = \alpha \int_{0}^{T} D_{s} dW_{s} + \tilde{\alpha} \int_{0}^{T} \tilde{D}_{s} dW_{s}$$
Proposition 6.21.
$$\int_{0}^{T_{1}} D_{s} dW_{s} + \int_{T_{1}}^{T_{2}} D_{s} dW_{s} = \int_{0}^{T_{2}} D_{s} dW_{s}$$
Question 6.22. If $D \ge 0$, then must $\int_{0}^{T} D_{t} dW_{t} \ge 0$? $\leftarrow F_{s} | Q_{s} |$

$$\int (\alpha P_{s} + \tilde{\alpha} \tilde{D}_{s}) dW_{s} = \lim_{t \to \infty} \sum (\alpha P_{s} + \tilde{\alpha} \tilde{D}_{t}) \Delta_{t} W$$

$$\int \int (\alpha P_{s} + \tilde{\alpha} \tilde{D}_{s}) dW_{s} = \lim_{t \to \infty} \sum (\alpha P_{s} + \tilde{\alpha} \tilde{D}_{t}) \Delta_{t} W$$

6.5. Semi-martingales and Itô Processes.

Question 6.23. What is $\int_0^t W_s \, dW_s$?

Definition 6.24. A semi-martingale is a process of the form $X = X_0 + \underline{B} + \underline{M}$ where: $\succ X_0$ is \mathcal{F}_0 -measurable (typically X_0 is constant). $\triangleright \overline{B}$ is an adapted process with finite first variation. (aka Banda Variation) $\triangleright M$ is a martingale.

Definition 6.25. An *Itô-process* is a semi-martingale $X = X_0 + B + M$, where: $\triangleright B_t = \int_0^t b_s ds$, with $\int_0^t |b_s| ds < \infty$ (Stol Provem int) $\rightarrow dB_t = b_t dt$ $\triangleright M_t = \int_0^t \sigma_s dW_s$, with $\int_0^t |\sigma_s|^2 ds < \infty$ (I_0 int) $\rightarrow dM_t = \nabla_t dW_t$ *Remark* 6.26. Short hand notation for Itô processes: $dX_t = b_t dt + \sigma_t dW_t$.

Remark 6.27. Expressing $X = X_0 + B + M$ (or $dX = b dt + \sigma dW$) is called the *semi-martingale* decomposition or the *Itô decomposition* of X.

Theorem 6.28 (Itô formula). If $\underline{f} \in C^{1,2}$, then

$$df(\underline{t}, \underline{X}_t) = \partial_t f(t, X_t) d\underline{t} + \partial_{\underline{x}} f(t, X_t) d\underline{X}_t + \frac{1}{2} \partial_{\underline{x}}^2 f(t, X_t) d[X, X]$$

Remark 6.29. This is the main tool we will use going forward. We will return and study it thoroughly after understanding all the notions involved.

Proposition 6.30. If
$$X = X_0 + B + M$$
, then $[X, X] = [M, M]$

Proposition 6.31 (Uniqueness). The Itô decomposition is unique. That is, if $X = X_0 + B + M = Y_0 + C + N$, with: $\triangleright B, C$ bounded variation, $B_0 = C_0 = 0$ $\triangleright M, N$ martingale, $M_0 = N_0 = 0$. Then $X_0 = Y_0$, B = C and M = N.