hast time: B.M. M $W_{\pm} \rightarrow B_{\circ}M$. $\begin{array}{c} \textcircled{0} \\ W \end{array} is a cis fracts \\ \hline \\ \hline \\ W_t \\ & \sim N(0, t-s) \end{array}$ & (2) Wy-Ws is ind of fs

Definition 5.4. $E_t X$ is the unique *random variable* such that:

(1) $E_t X$ is \mathcal{F}_t -measurable. (2) For every $A \in \mathcal{F}_t$, $\int_A E_t X dP = \int_A X dP$ cond exp of X given Ef) Remark 5.5. Choosing $A = \Omega$ implies $\vec{E}(E_t X) = EX$. **Proposition 5.6** (Useful properties of conditional expectation). (1) If $\alpha, \beta \in \mathbb{R}$ are constants, $\underline{X}, \underline{Y}$, random variables $E_t(\alpha \underline{X} + \underline{\alpha}\underline{Y}) = \underline{\alpha}E_tX + \underline{\beta}E_tY$. (2) If $X \ge 0$, then $E_t X \ge 0$. Equality holds if and only if X = 0 almost surely. (3) (Tower property) If $0 \leq s \leq t$, then $\mathbf{E}_s(\mathbf{E}_tX) = \mathbf{E}_sX$. (4) If \underline{X} is \mathcal{F}_t measurable, and \underline{Y} is any random variable, then $\mathbf{E}_t(\underline{X}Y_t) = X\mathbf{E}_tY$. (5) If X is \mathcal{F}_t measurable, then $E_t X = X$ (follows by choosing Y = 1 above). (6) If Y is independent of \mathcal{F}_t , then $E_t Y = (EY)$.

 $\left(E(X|\xi) = E_{1}^{X}\right)$

Remark 5.7. These properties are exactly the same as in discrete time.

Lemma 5.8 (Independence Lemma). If X is \mathcal{F}_t measurable, Y is independent of \mathcal{F}_t^{\dagger} , and $f = f(x, y) \colon \mathbb{R}^2 \to \mathbb{R}$ is any function, then $E_t f(X, \underline{Y}) = g(\underline{Y}), \quad where \quad g(\underline{y}) = E f(\underline{X}, \underline{y}).$ Remark 5.9. If p_X is the PDF of X, then $E_t f(X, Y) = \int_{-\infty}^{\infty} \int_{-\infty}^$ E, f(X,Y) = ^qange Y & leave X alone $= \int f(X, y) \neq (y) dy$

5.4. Martingales.

Definition 5.10. An adapted process M is a martingale if for every $0 \le s \le t$, we have $\underline{E}_s \underline{M}_t = M_s$.

Remark 5.11. As with discrete time, a martingale is a fair game: stopping based on information available today will not change your expected return.

Discrite time;
$$M$$
 is a mg of $E_{M}M_{MH} = M_{M}$.
 $there \Rightarrow \forall m \le n, \quad E_{M}M_{M} = M_{M}M_{M}$
 $M_{M} \in \mathbb{N}$
 $s, t \in [0, b)$.

Proposition 5.12. Brownian motion is a martingale.

Proof. $W \longrightarrow B_{M}$ NTS for every $s \leq t$, $F_s W_t = W_s$ We $E_s W_1 = E_s (W_1 - W_s + W_s)$ $= E_{c}(W_{L}-W_{s}) + E_{s}W_{s}$ $= E(W_2 - W_s) + W_s$

(" Wy is & meas & $W_{t} - W_{s}$ is ind of \mathcal{E}_{s}) $\bigcirc + W_{c} \qquad (:: W_{t} - W_{s} \sim N(0, t-s))$ $= W_{\zeta}$ QED,

(Dotation: Somitimes while by = b(t)) 6. Stochastic Integration timo t. 6.1. Motivation. chose in Stock price • Hold b_t shares of a stock with price S_t . • Only trade at times $P = \{0 = t_1 < \dots, t_n = T\}$ • Net gain/loss from changes in stock price: $\sum_{k=1}^{n} b_{t_k} \Delta_k S_{\lambda}'$, where $\Delta_k S = S_{t_{k+1}} - S_{t_k}$. • Trade continuously in time. Expect net gain/loss to be $\lim_{\|P\|\to 0} \sum_{k=0}^{n-1} b_{t_k} \Delta_k S = \int_0^T b_t \, dS_t.$ $\models \|P\| = \max_k (t_{k+1} - t_k). \qquad (\text{Norm}(P) \gtrsim \text{ with } int(P))$ $\triangleright \operatorname{\underline{Riemann-Stieltjes}}_{\parallel P \parallel \to 0} \operatorname{\underline{N-1}}_{k} b_{\xi_k} \Delta_k S = \int_0^T b_t \, dS_t,$ \triangleright The $\xi_k \in [t_k, t_{k+1}]$ can be chosen arbitrarily. \triangleright Only works if the *first variation* of S is finite. False for most stochastic processes.

Rimonn - Stilles int : lim (P|1->0 $\left\{ \left(\frac{3}{k} \right) \right\}$ (Stran $\left(\Delta_{k}^{*}\right)$ 1/ $MT = t_{n}$ $A_{k}X = X_{L}$ - X = ine of X tk over Itkitkn]

6.2. First Variation.

Definition 6.1. For any process \underline{X} , define the *first variation* by

$$V_{[0,T]}(X) \stackrel{\text{\tiny def}}{=} \lim_{\|P\| \to 0} \sum_{k=0}^{n-1} |\Delta_k X| \cdot \stackrel{\text{\tiny def}}{=} \lim_{\|P\| \to 0} \sum_{k=0}^{n-1} |X_{t_{k+1}} - X_{t_k}|.$$

Remark 6.2. If X(t) is a differentiable function of t then $V_{[0,T]}X < \infty$.

Proposition 6.3.
$$EV_{[0,T]}W = \infty$$

Remark 6.4. In fact, $V_{[0,T]}W = \infty$ almost surely. Brownian motion does not have finite first variation.

Remark 6.5. The Riemann-Stieltjes integral $\int_0^T b_t dW_t$ does not exist.

 $\mathbb{K}_{\text{News}} \quad \mathbb{W}_{\underline{k}\underline{\ell}} - \mathbb{W}_{\underline{k}} \sim \mathbb{N}(0, \frac{1}{m})$

 $\Rightarrow E\left(W_{k+1} - W_{k}\right) = C \cdot \left(\frac{1}{\sqrt{n}}\right)$ some constat

$$(\text{Nile : If } X \sim N(0, r^2), \\ \text{Thun } E(X) = \int_{-\infty}^{\infty} \ln e^{-\frac{\pi^2}{2r^2}} \frac{dx}{\sqrt{2\pi}} r.$$

(1) 5 e^{-1/2} $Put y = \frac{x}{r}$ (1 $dx = \sigma dy$ - 00 $= \mathbf{r} \int \frac{d\mathbf{r}}{|\mathbf{q}|} e^{-\frac{\mathbf{r}}{2}/2} ,$ $\Rightarrow E\left(N(0, r^2)\right) = T\left(c\right)$

6.3. Quadratic Variation.

Definition 6.6. If \underline{M} is a continuous time adapted process, define $[\underline{M}, \underline{M}]_{T} = \lim_{\|P\| \to 0} \sum_{k=0}^{n-1} (M_{t_{k+1}} - M_{t_k})^2 = \lim_{\|\underline{P}\| \to 0} \sum_{k=0}^{n-1} (\Delta_k M)^2.$

Proposition 6.7. For continuous processes the following hold:

(1) Finite first variation implies the quadratic variation is 0(2) Finite (non-zero) quadratic variation implies the first variation is infinite.

(Will revisit this shortly)
$$[M, M]_{T} = Q.V. d M nd to T$$

 $M adapted \Longrightarrow [M, M] is an adapted (inter-
dwoods.)$

Proposition 6.8. $[W, W]_T = \underline{T}$ almost surely. Remark 6.9. For use in the proof: $\operatorname{Var}(\mathcal{N}(0, \sigma^2)^2) = \mathbf{E}\mathcal{N}(0, \sigma^2)^4 - (\mathbf{E}\mathcal{N}(0, \sigma^2)^2)^2 = 2\sigma^4$. Proof:.

 $(Will invelop [W, W]_T = T)$ $\left(\begin{array}{c} 1 \\ 1 \end{array} \right) \quad \left(\begin{array}{c} \sum_{k=1}^{w-1} \left(\Delta_{k} W \right)^{2} - T \right) = 0$ Will shows \mathbb{D} + \mathbb $\mathbb{P}_{k} \neq (\widehat{D}) = \mathbb{E}\left(\sum_{i=1}^{n+1} (\Delta_{k} w)^{2} - T\right) =$

 $= \sum_{0}^{m} \frac{T}{m} - T = O \qquad G_{k} W \sim N(D, \frac{T}{m})$ $P_{z} = \left\{ 2 \stackrel{\circ}{\circ} \bigvee_{ab} \left(\frac{2}{2} \left(\Delta_{k} \stackrel{\circ}{\mathcal{W}} \right)^{2} - 1 \right) = \bigvee_{ab} \left(\frac{2}{2} \left(\Delta_{k} \stackrel{\circ}{\mathcal{W}} \right)^{2} \right)$ $= \sum_{D=1}^{n-1} \operatorname{Var}\left(\left(\Delta_{k}W\right)^{2}\right) \qquad \left(\left(\Delta_{k}W\right)^{2} \sim N(0, \frac{T}{n})^{2}\right)$ $= \sum_{D=1}^{n-2} \frac{2}{n^{2}} = 2\frac{T^{2}}{n} \xrightarrow{n \to \infty} O \qquad \Rightarrow \operatorname{Var}\left(\left(\Delta_{k}W\right)^{2}\right) = 2\frac{T^{2}}{n^{2}}$

Theorem 6.11. Let <u>M</u> be a continuous martingale.

- (1) $\underline{E}M_t^2 < \infty$ if and only if $E[M, M]_t^{\ddagger} < \infty$.
- (2) In this case $\underline{M}_t^2 [\underline{M}, \underline{M}]$ is a continuous martingale.
- (3) Conversely, if $M_t^2 A_t$ is a martingale for any continuous, increasing process A such that $A_0 = 0$, then we must have $A_t = [M, M]_t$.

Remark 6.12. The optional problem on HW2 gives some intuition in discrete time.