


Theorem 4.57. Let Xn represent the wealth of a portfolio at time n. The portfolio is
self-financing portfolio if and only if the discounted wealth DnXn is a martingale under the
risk neutral measure P̃ .

Remark 4.58. Recall a portfolio is self financing if Xn+1 = ΔnSn+1 + (1 + r)(Xn − ΔnSn)
for some adapted process Δn.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.

(2) All replication has to be done using self-financing portfolios.



Proof of Proposition 4.1.







Example 4.59. Consider two stocks S1 and S2, u = 2, d = 1/2.
� The coin flips for S1 are heads with probability 90%, and tails with probability 10%.
� The coin flips for S2 are heads with probability 99%, and tails with probability 1%.
� Which stock do you like more?
� Amongst a call option for the two stocks with strike K and maturity N , which one will be

priced higher?



Remark 4.60. Even though the stock price changes according to a coin that flips heads with
probability p1, the arbitrage free price is computed using conditional expectations using the
risk neutral probability. So when computing ẼnVN , we use our new invented “risk neutral”
coin that flips heads with probability p̃1 and tails with probability q̃1.

Concepts that will be generalized to continuous time.
• Probability measure: Lebesgue integral, and not a finite sum. Same properties.
• Filtration: Same intuition. No easy description.
• Conditional expectation: Same properties, no formula.
• Risk neutral measure: Formula for P̃ is complicated (Girsanov theorem.)
• Everything still works because of of Theorem 4.57. Understanding why is harder.



5. Stochastic Processes
5.1. Brownian motion.
• Discrete time: Simple Random Walk.

� Xn =
�n

1 ξi, where ξi’s are i.i.d. Eξi = 0, and Range(ξi) = {±1}.
• Continuous time: Brownian motion.

� Yt = Xn + (t − n)ξn+1 if t ∈ [n, n + 1).
� Rescale: Y ε

t =
√

εYt/ε. (Chose
√

ε factor to ensure Var(Y ε
t ) ≈ t.)

� Let Wt = lim
ε→0

Y ε
t .

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

� Named after Robert Brown (a botanist).
� Definition is intuitive, but not as convenient to work with.











• If t, s are multiples of ε: Y ε
t − Y ε

s ∼ √
ε

(t−s)/ε�

i=1
ξi

ε→0−−−→ N (0, t − s).

• Y ε
t − Y ε

s only uses coin tosses that are “after s”, and so independent of Y ε
s .

Definition 5.2. Brownian motion is a continuous process such that:
(1) Wt − Ws ∼ N (0, t − s),
(2) Wt − Ws is independent of Fs.



5.2. Sample space, measure, and filtration.
• Discrete time: Sample space Ω = (ω1, . . . , ωN ).
• View (ω1, . . . , ωN ) as the trajectory of a random walk.
• Continuous time: Sample space Ω = C([0, ∞)) (space of continuous functions).

� It’s infinite. No probability mass function!
� Mathematically impossible to define P (A) for all A ⊆ Ω.



• Restrict our attention to G, a subset of some sets A ⊆ Ω, on which P can be defined.
� G is a σ-algebra. (Closed countable under unions, complements, intersections.)

• P is called a probability measure on (Ω, G) if:
� P : G → [0, 1], P (∅) = 0, P (Ω) = 1.
� P (A ∪ B) = P (A) + P (B) if A, B ∈ G are disjoint.

� If An ∈ G, P
� ∞�

1
An

�
= lim

n→∞
P (An).

• Random variables are measurable functions of the sample space:
� Require {X ∈ A} ∈ G for every “nice” A ⊆ R.
� E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3, 4)} ∈ G, etc.
� Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.



• Expectation is a Lebesgue Integral: Notation EX =
�

Ω
X dP =

�

Ω
X(ω)dP (ω).

� No simple formula.
� If X =

�
ai1Ai

, then EX =
�

aiP (Ai).

� 1A is the indicator function of A: 1A(ω) =
�

1 ω ∈ A

0 ω �∈ A



Proposition 5.3 (Useful properties of expectation).
(1) (Linearity) α, β ∈ R, X, Y random variables, E(αX + βY ) = αEX + βEY .
(2) (Positivity) If X � 0 then EX � 0. If X � 0 and EX = 0 then X = 0 almost surely.
(3) (Layer Cake) If X � 0, EX =

� ∞

0
P (X � t) dt.

(4) More generally, if ϕ is increasing, ϕ(0) = 0 then Eϕ(X) =
� ∞

0
ϕ�(t) P (X � t) dt.

(5) (Unconscious Statistician Formula) If PDF of X is p, then Ef(X) =
� ∞

−∞
f(x)p(x) dx.



• Filtrations:
� Discrete time: Fn = events described using the first n coin tosses.
� Coin tosses doesn’t translate well to continuous time.
� Discrete time try #2: Fn = events described using the trajectory of the SRW up to time

n.
� Continuous time: Ft = events described using the trajectory of the Brownian motion up

to time t.
� If ti � t, Ai ⊆ R then {Wt1 ∈ A1, . . . , Wtn ∈ An} ∈ Ft. (Need all ti � t!)
� As before: if s � t, then Fs ⊆ Ft.
� Discrete time: F0 = {∅, Ω}. Continuous time: F0 = {A ∈ G | P (A) ∈ {0, 1}}.





5.3. Conditional expectation.
• Notation Et(X) = E(X | Ft) (read as conditional expectation of X given Ft)
• No formula! But same intuition as discrete time.
• EtX(ω) = “average of X over Πt(ω)”, where Πt(ω) = {ω� ∈ Ω | ω�(s) = ω(s) ∀s � t}.
• Mathematically problematic: P (Πt(ω)) = 0 (but it still works out.)



Definition 5.4. EtX is the unique random variable such that:
(1) EtX is Ft-measurable.
(2) For every A ∈ Ft,

�

A

EtX dP =
�

A

X dP

Remark 5.5. Choosing A = Ω implies E(EtX) = EX.

Proposition 5.6 (Useful properties of conditional expectation).
(1) If α, β ∈ R are constants, X, Y , random variables Et(αX + αY ) = αEtX + βEtY .
(2) If X � 0, then EtX � 0. Equality holds if and only if X = 0 almost surely.
(3) (Tower property) If 0 � s � t, then Es(EtX) = EsX.
(4) If X is Ft measurable, and Y is any random variable, then Et(XY ) = XEtY .
(5) If X is Ft measurable, then EtX = X (follows by choosing Y = 1 above).
(6) If Y is independent of Ft, then EtY = EY .

Remark 5.7. These properties are exactly the same as in discrete time.


