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Theorem 4.57. Let X, represent the wealth of a portfolio at time n. The portfolio is
self-financing portfolw if and only if the discounted wealth D X, is a martingale under the
risk neutral measure P.

Remark 4.58. Recall a portfolio is self financing if hn_l,_l n)S'n_H +(1 + ) X @

for some adapted process A,.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.
(2) All replication has to be done using self-financing portfolios.
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Ezample 4.59. Consider two stocks S* and 52, u=2,d =1/2.
> The coin flips for S' are heads with proba:bility 90%, and tails with probability 10%.
[l> The coin flips for 52 are heads with probability‘ﬁand tails with probability 1%.
> Which stock do you like more? w
> Amongst a call option for the two stocks with strike K and maturlty N, which one will be
priced higher?

N> Qg |
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Remark 4.60. Even though the stock price changes according to a coin that flips heads with
probability p;, the arbitrage free price is computed using conditional expectations using the
risk neutral probability. So when computing E,, Vi, we use our new invented “risk neutral”
coin that flips heads with probability p; and tails with probability ;.

Concepts that will be generalized to continuous time.

e Probability measure: Lg&e_s%a& and not a finite sum. Same properties.
o@“iltration: Same intuition. No easy description.

e Conditional expectation: Same properties, no formula.
e Risk neutral measure: Formula for P is complicated (Girsanov theorem.)

e Everything still works because of of Theorem 4.57. Understanding why is harder.
"—\



5. Stochastic Processes @v’”w L EZ /\
5.1. Brownian motion. 3 A W)( GM)AX

) Dlscrete tnfge Simple Random Walk.
{i, where {;’s are i.i.d. E¢; = 0, and Range({;) = {£
— 3
o Contlnuous time: Brownian motion.
> Y =Xp,+ (t—n)épp1ift € [n,n+1).
> Rescale: Y = \fY}ﬁ (Chose +/¢ factor to ensure Var(YyF) ~ t.)

DLetZVﬂtfggn \2

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

> Named after Robert Brown (a botanist).
o . . . o . \— . .
> Definition is intuitive, but not as convenient to work with.
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(t=s)/e
—
. Ifg are multiples of e: Y7 — };SE ~ ﬁ Z & =% N(Q,E;ﬁ) (C[_ |

i=1
e V" — Y7 only uses coin tosses that arLe\“anter-%”/,kand so independent of Y.

Definition 5.2. Brownian motion is a continuous process such that:
&_ﬁ_ﬂ_ﬁ__}

(1) W= Wy~ N(Ot=5), -
{(2) Wi — Wy is independent of = M% %’vw %‘th%
| i e <




5.2. Sample space, measure, and filtration. L ‘ x
e Discrete time: Sample space Q —%wl, .. wN)l‘ (,D, = @}[ {‘ Corm “‘;Z
e View (wy,...,wn) as the traJectordeo walk.
e Continuous tlme Sample space Q = C([0,00)) (space of continuous functions).

> It’s infinite. No probability mass function!
ematically impossible to define P(A) for all A C .
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a o-algebra. (Closed countable under unlonmplements infersections.)

o Ps called a prob pro abzlzt measure on (.,/G)) if;
> P:G—10,1 —_\—%JTU) Q@“ Q«Q.V*\eg) ’POOC'«LO/@

° Pﬁ"sict our attention to@ subset of some sets A C €2, on which P can be defined.
>(G

> P(AUB) = T@.
> If A, € G, P(LIJ An) = lim P(A,).

e Random variables are measurable functions of the sample space:
> Require {X € A} € G for every “nice” A C R.
>Eg {X=1}€G, {X>5}e€G {X €34} €, ectc
> Recall {X € A} ={we Q| X(w) € A}

foes|ord = >0




e Expectation is a Lebesgue Integral: Notation EX = % XdP = / X(w
> No simple formula.

DIfX:ZailA,,thenEX:w) 0\ L,RZ 6% e >

1 we A
> 14 is the indicator function of A: 14(w) =

0 wegA
EX= 20 HX =)

Wasle e © EX = @
006§L

Y
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Proposition 5.3 (Useful properties of expectation). &L\m)f mj fl-

(1) (Linearity) . 8 € R, X,Y random variables, E(aX + fY) = aEX + SEY . /)\
(2) (Positivity) If X > 0 then EX > 0. If X >0 and EX = O then X =0 @m@

(3) (Layer Cake) If X >0 C’P(xfo) =1).

=3
(4) More generally, if ¢ is increasing, p(0) =0 then E&l: / ¢ (t) P(X > t)dt.

= (xz0) VO\,_7M
(5) (Unconscious Statistician Formula) If PDF of X is p, then Ef(X)= 3 f(z)p(x) de.
(og) /
T S’( %@ ok

£l = Vo 10 &




e Filtrations:

>
>
>

v

Discrete time:@: events described using the first n coin tosses.

Coin tosses doesn’t translate well to continuous time.

Discrete time try #2: F,, = events described using the trajectory of the SRW up to time
n. .

Continuous time: @: events described using the trajectory of the Brownian motiolm up
toti t. I -

Tt <t Ai CR then {Wy, € Ay, Wi e An} € Fy. (Need alllt; < )
As before: i then F C ft & %FM R :
Discrete time:” Fo = {0, Q} Continuous time: ={AeG|P(A)€{0,1}}.
7 =O§ SO
M\ w0 N
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5.3. Conditional exgg_e@t'&r_l[.
Notation E¢(X) ='E(X | F;) (read as conditional expectation of X given J)
No formula! But same intuition as discrete time. T
E: X (w) = “average of X over Ht(g)”, where II;(w) = {w’ € Q| w'(s) = w(s) Vs < t}.
Mathematically problematic: P(II;(w)) = 0 (but it still works out.)



Definition 5.4. E;X is the unique random variable such that: c %/ >
(1) EX is Fi-measurable. C}‘ey ¥ a Q\P\/ % K—;)zké Azﬁ T
(2) For everm E, X dP = / XdP Do H 7 E XD 31,@3
_ = o Timd -~
T i ‘ o (
Remark 5.5. Choosing A = Q implies E(E,X) :& _ 1—X(w>§r bo)
Proposition 5.6 (Useful properties of conditional expectation). wek

(1) If o, B € R are constants, X,Y, random variables Ei(aX + oY) = aE X + SE;Y.
(2) If X 20, then E; X > 0. Equality holds if and only if X = 0 almost surely.

(8) (Tower property) If 0 < s < t, then E,(E,X) = E,X.

(4) If X is F; measurable, and Y is any random variable, then E(XY) = X E;Y .

(5) If X is Fy measurable, then E:X = X (follows by choosing Y = 1 above).

(6) If'Y is independent of F;, then E;Y = EY.

Remark 5.7. These properties are exactly the same as in discrete time.



