Last time:

$$
\tilde{P} \rightarrow \tilde{E}_{n}\left(D_{n+1} S_{n+1}\right)=D_{n} S_{n}
$$

(Disabled stack is a $M g$ adar $\widetilde{\sim}$)
Risk neater Meeone.

Theorem 4.57. Let X_{n} represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if and only if the discounted wealth $D_{n} X_{n}$ is a martingale under the risk neutral measure $\tilde{\boldsymbol{P}}$.

Remark 4.58. Recall a portfolio is self financing if for some adapted process Δ_{n}.
(1) That is, self-financing portfolios use only tradable assets when trading, and don't look into the future.
(2) All replication has to be done using self-financing portfolios.

$$
\begin{aligned}
& \text { Last tine: } X_{n} \rightarrow \text { wealth af a self fin Port } \\
& \rightarrow D_{n} X_{n} \text { is a my mods P } \\
& \text { Conversely: } D_{n} X_{n} \text { mag wad n } P \rightarrow X_{n} \text { is self fin } \rightarrow \text { Par try (Noting) } \rightarrow
\end{aligned}
$$

Proof of Proposition (4.1.) \rightarrow Scanty pays V_{N} at the N
Then AFP at time $n \leqslant N$ is

$$
V_{n}=\frac{1}{D_{n}} \tilde{E}_{n}\left(D_{N} V_{N}\right)
$$

Pf: Price by replication.
$\left.\begin{array}{l}\text { Find a self fir part on } \\ \text { neal th at the en } \rightarrow X_{n}\end{array}\right\}$ Want $X_{N}=V_{N}$

Thun we karos $\quad X_{n}=A F P$.
(1) Charae $X_{N}=V_{N}$
(2) Difine $X_{n}=\frac{1}{D_{n}} \tilde{E}_{n}\left(D_{N} X_{N}\right)=\frac{1}{D_{n}} \tilde{E}_{n}\left(D_{N} V_{N}\right)$
(3) Clim: $D_{n} X_{n}$ is a $M g$ molur \widetilde{P}

Pf: $\tilde{E}_{n}\left(D_{n+1} X_{n+1}\right) \quad$ Want $D_{n} X_{n}$.
$k_{\text {naw }} \tilde{E}_{n}\left(D_{n+1} X_{n+1}\right)=\tilde{E}_{n}\left(\tilde{E}_{n+1}\left(D_{n} X_{n}\right)\right)$ $\stackrel{\text { toner }}{=} \tilde{E}_{n}\left(D_{N} X_{N}\right)=\frac{D_{n} X_{n}}{D_{\text {oue }}!!}$
(4) T.hen $4.57 \Rightarrow x_{-n}=$ wealth of a sulf for Pout.

Knoms $X_{N}=V_{N} \Rightarrow$ Repliation $\Rightarrow \forall u \leq N, X_{n}=$ AFP.

Example 4.59. Consider two stocks \underline{S}^{1} and $\underline{S}^{2}, \underline{u}=2, \underline{\underline{d}}=1 / 2$.
\triangleright The coin flips for S^{1} are heads with probability 90%, and tails with probability 10%.
$\| \triangleright$ The coin flips for $\overline{S^{2}}$ are heads with probability $\overline{99 \%}$ and tails with probability 1%.
\triangleright Which stock do you like more?
\triangleright Amongst a call option for the two stocks with strike $\underline{\underline{K}}$ and maturity N, which one will be priced higher?
\rightarrow Same!
Fomla for $\tilde{\phi}=\frac{1+r-d}{n-d} \leftarrow$ doesut depart on pop:!

Remark 4.60. Even though the stock price changes according to a coin that flips heads with probability p_{1}, the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{\boldsymbol{E}}_{n} V_{N}$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_{1} and tails with probability \tilde{q}_{1}.

Concepts that will be generalized to continuous time.

- Probability measure: Lebesgue integral, and not a finite sum. Same properties.
- Filtration: Same intuition. No easy description.
- Conditional expectation: Same properties, no formula.
- Risk neutral measure: Formula for $\tilde{\boldsymbol{P}}$ is complicated (Girsanov theorem.)
- Everything still works because of of Theorem 4.57. Understanding why is harder.

5. Stochastic Processes

5.1. Brownian motion.

- Discrete time: Simple Random Walk. $\triangleright X_{n}=\sum_{1}^{n} \underline{\xi_{i}}$, where $\underline{\xi_{i}}$'s are i.i.d. $\boldsymbol{E} \xi_{i}=0$, and $\operatorname{Range}\left(\xi_{i}\right)=\{ \pm 1\}$.
- Continuous time: Brownian motion.
$\triangleright Y_{t}=X_{n}+(\underline{t}-n) \xi_{n+1}$ if $t \in[n, n+1)$.
\triangleright Rescale: $Y_{t}^{\varepsilon}=\sqrt{\varepsilon} Y_{t / \varepsilon} .\left(\right.$ Chose $\sqrt{\varepsilon}$ factor to ensure $\operatorname{Var}\left(Y_{t}^{\varepsilon}\right) \approx t$.)
\triangleright Let $\underline{\underline{W_{t}}}=\lim _{\varepsilon \rightarrow 0} Y_{t}^{\varepsilon}$.
Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.
\triangleright Named after Robert Brown (a botanist).
\triangleright Definition is intuitive, but not as convenient to work with.

Simple vardion Walk

$\varepsilon \rightarrow 0$ lonvee !o "ds time RW"
(Brewrian maton)
u

$$
\begin{aligned}
& y_{t / \varepsilon} \quad(\operatorname{san} t / \varepsilon \in \mathbb{N}) \\
& y_{t / 6}=\sum_{i}^{t / \varepsilon} \xi_{i} \quad\left(\sin \text { of } \frac{t}{\varepsilon}\right. \text { iid RV's } \\
& \operatorname{man}^{\varepsilon} 0 \text { \& } \operatorname{Var} \text { 1) } \\
& \operatorname{Var}\left(Y_{t / q}\right) q=\frac{t}{\varepsilon} \\
& \Rightarrow \operatorname{Var}\left(\sqrt{\varepsilon} Y_{t / c}\right)=(\sqrt{\varepsilon})^{2} \cdot \frac{t}{\varepsilon}=t
\end{aligned}
$$

- If $\underline{\underline{t, s}}$ are multiples of $\varepsilon: \underline{\underline{Y_{t}^{\varepsilon}}-Y_{s}^{\varepsilon}} \sim \underline{\sqrt{\varepsilon}} \sum_{i=1}^{\frac{(t-s) / \varepsilon}{L}} \xi_{i} \xrightarrow{\varepsilon \rightarrow 0} \mathcal{N}(\underline{\underline{0}}, \underbrace{t-s})$. (CRT)
- $\underline{Y}_{t}^{\varepsilon}-\underline{Y}_{s}^{\varepsilon}$ only uses coin tosses that are "after $s "$, and so independent of Y_{s}^{ε}.

Definition 5.2. Brownian motion is a continuous process such that:
$\left\{\right.$ (1) $\underline{W}_{t}-W_{s} \sim \mathcal{N}(\underline{0}, t-s)$,
(2) $\widehat{W}_{t}-W_{s}$ is independent of \mathcal{F}_{s}. Inf from the times

5.2. Sample space, measure, and filtration.

- Discrete time: Sample space $\underline{\underline{\Omega}}=\left\{\left(\omega_{1}, \ldots, \omega_{N}\right)_{2} \omega_{T}=\right.$ outcome of th comm toss $\}$
- View $\left(\omega_{1}, \ldots, \omega_{N}\right)$ as the trajectory of a random walk.
- Continuous time: Sample space $\Omega=C([0, \infty))$ (space of continuous functions). \triangleright It's infinite. No probability mass function! \square Mathematically impossible to define $\boldsymbol{P}(A)$ for all $A \subseteq \Omega$.

- Restrict our attention to $\mathcal{G}_{\text {, }}$ a subset of some sets $A \subseteq \Omega$, on which \boldsymbol{P} can be defined. $\Delta(\mathcal{G}$ is a σ-algebra. (Closed countable under unions, complements, $\overline{\text { intersections.) }}$
$\int \boldsymbol{P}_{\text {is called a probability measure on }}(\mathbb{\Omega}, \mathcal{G})$ if:
$\begin{array}{l}\triangleright \boldsymbol{P}: \mathcal{G} \rightarrow[0,1], \boldsymbol{P}(\emptyset)=0, \boldsymbol{P}(\Omega)=1 . \\ \triangleright \boldsymbol{P}(\underline{A} \cup \underline{B})=\boldsymbol{P}(A)+\boldsymbol{P}(B) \text { if } A, B \in \mathcal{G} \text { are disjoint. }\end{array} \quad($ ne. $\left.\forall A \in \mathcal{G}) P(A) \in[0,1]\right)$
\triangleright If $A_{n} \in \mathcal{G}, \boldsymbol{P}\left(\bigcup_{1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \boldsymbol{P}\left(A_{n}\right)$.
- Random variables are measurable functions of the sample space:
\triangleright Require $\{X \in A\} \in \underline{\mathcal{G}}$ for every "nice" $A \subseteq \mathbb{R}$.
\triangleright E.g. $\{X=1\} \in \mathcal{G},\{\underline{X}>5\} \in \mathcal{G},\{X \in \overline{[3,4)\}} \in \mathcal{G}$, etc.
\triangleright Recall $\{X \in A\}=\{\overline{\omega \in \Omega} \mid X(\omega) \in \overline{A\}}$.

$$
\frac{\{\underline{\{ } \in \Omega \mid x(\omega)>0\}}{\tau_{\text {save sate }}}=\left\{\begin{array}{l}
\text { of } \Omega .
\end{array}\right.
$$

- Expectation is a Lebesgue Integral: Notation $\underline{\boldsymbol{E} X}=\int_{\Omega} X \underline{d \boldsymbol{P}}=\int_{\Omega} X(\omega) d \boldsymbol{P}(\omega)$.
\triangleright No simple formula.
\triangleright If $X=\sum=\sum \underbrace{\underline{a_{i}} \boldsymbol{1}_{A_{i}},}$, then $\boldsymbol{E} X=\underbrace{\sum a_{i} \boldsymbol{P}\left(A_{i}\right) ;} \quad\left(a_{i} \in \mathbb{R}, A ; \in G\right.$ ane dis $)$
$\triangleright \underbrace{\mathbf{1}_{A}}$ is the indicator function of $A: \underbrace{\mathbf{1}_{A}(\omega)}= \begin{cases}1 & \underline{\omega \in A} \\ 0 & \underline{\omega \notin A}\end{cases}$

$$
E X=\sum a_{i} P\left(X=a_{i}\right)
$$

Disenele inge : $E X=\underbrace{}_{\omega \in \Omega} X(\omega)$

Proposition 5.3 (Useful properties of expectation).

$$
\text { almost smely: evert of prob } 1 \text {. }
$$

(1) (Linearity) $\alpha, \beta \in \mathbb{R}, X, Y$ random variables, $\underline{\boldsymbol{E}}(\alpha X+\beta Y)=\alpha \boldsymbol{E} X+\beta \boldsymbol{E} Y$.
(2) (Positivity) If $X \geqslant 0$ then $\boldsymbol{E} X \geqslant 0$. If $X \geqslant 0$ and $\boldsymbol{E X = 0}$ then $\underbrace{X=0 \text { almost surely, }}$

$$
(P(x=0)=1)
$$

(5) (Unconscious Statistician Formula) If PDF of X is p, then $\underbrace{\boldsymbol{E} f(X)}=\int_{-\infty}^{\infty} f(x) p(x) d x$. (hazy)

$$
\begin{aligned}
& k_{\text {uso }} E x=\int x p(x) d x \\
& E f(x)=\int f(x) p(x) d x
\end{aligned}
$$

- Filtrations:

\triangleright Discrete time: $\mathcal{F}_{n}=$ events described using the first n coin tosses.
\triangleright Coin tosses doesn't translate well to continuous time.
\triangleright Discrete time try \#2: $\underline{\underline{\mathcal{F}_{n}}}=$ events described using the trajectory of the SRW up to time
n.
\triangleright Continuous time: $\mathcal{F}_{t}=$ events described using the trajectory of the Brownian motion up
to time t. to time t.
\triangleright If $\left\{\underline{t_{i} \leqslant t}, A_{i} \subseteq \mathbb{R}\right.$ then $\left\{\underline{W_{t_{1}}} \in \underline{A_{1}}, \ldots, W_{t_{n}} \in A_{n}\right\} \in \underline{\underline{\mathcal{F}}}$. (Need all $\left(t_{i} \leqslant t!\right)$
\triangleright As before: if $s \leqslant(t)$ then $=\overline{\mathcal{F}}_{s} \subseteq \overline{\overline{\mathcal{F}}}_{t}$. Filteration.
\triangleright Discrete time: $\underline{\mathcal{F}}_{0}=\{\underline{\emptyset}, \underline{\underline{\Omega}}\}$. Continuous time: $\underline{\mathcal{F}}_{0}=\{A \in \mathcal{G} \mid \boldsymbol{P}(A) \in\{0, \underline{\underline{1}}\}\}$.

$$
\begin{array}{ll}
f_{\text {lx }} t \in \mathbb{R} . & A=(0, \infty) \\
\left\{\omega_{s} \in M\right\} & A \subseteq \mathbb{R} \text { wice } \\
\left\{\omega_{s} \geqslant 0\right\} \in f_{z} ? & \text { \& } \leqslant \leqslant t
\end{array}
$$

5.3. Conditional expectation.

- Notation $\underline{\boldsymbol{E}_{t}(X)} \boldsymbol{E}\left(X \mid \mathcal{F}_{t}\right)$ (read as conditional expectation of X given $\underline{\mathcal{F}_{t}}$)
- No formula! But same intuition as discrete time.
- $\boldsymbol{E}_{t} X(\omega)=$ "average of X over $\Pi_{t}(\underline{\omega})$ ", where $\Pi_{t}(\omega)=\left\{\omega^{\prime} \in \Omega \mid \omega^{\prime}(s)=\omega(s) \forall s \leqslant t\right\}$.
- Mathematically problematic: $\boldsymbol{P}\left(\Pi_{t}(\omega)\right)=0$ (but it still works out.)

Definition 5.4. $\boldsymbol{E}_{t} X$ is the unique random variable such that:
(1) $\boldsymbol{E}_{t} X$ is \mathcal{F}_{t}-measurable. (ie $\forall A \subseteq \mathbb{R},\left\{E_{t} X \in A\right\} \in \mathcal{f}_{t}$)
(2) For every $A \in \mathcal{F}_{t}, \int_{A} \boldsymbol{E}_{t} X d \boldsymbol{P}=\int_{A} X d \boldsymbol{P}$ (Rise time $\sum_{\omega \in A} E_{n} X(\omega) \phi(\omega)$

Remark 5.5. Choosing $\underline{\underline{A}}=\underline{\Omega}$ implies $\underbrace{\boldsymbol{E}\left(\boldsymbol{E}_{t} X\right)} \underbrace{\boldsymbol{E} X .}$
Proposition 5.6 (Useful properties of conditional expectation).

$$
\left.=\sum_{\omega \in A} X(\omega) p(\omega)\right)
$$

(1) If $\alpha, \beta \in \mathbb{R}$ are constants, X, Y, random variables $\boldsymbol{E}_{t}(\alpha X+\alpha Y)=\alpha \boldsymbol{E}_{t} X+\beta \boldsymbol{E}_{t} Y$.
(2) If $X \geqslant 0$, then $\boldsymbol{E}_{t} X \geqslant 0$. Equality holds if and only if $X=0$ almost surely.
(3) (Tower property) If $0 \leqslant s \leqslant t$, then $\boldsymbol{E}_{s}\left(\boldsymbol{E}_{t} X\right)=\boldsymbol{E}_{s} X$.
(4) If X is \mathcal{F}_{t} measurable, and Y is any random variable, then $\boldsymbol{E}_{t}(X Y)=X \boldsymbol{E}_{t} Y$.
(5) If X is \mathcal{F}_{t} measurable, then $\boldsymbol{E}_{t} X=X$ (follows by choosing $Y=1$ above).
(6) If Y is independent of \mathcal{F}_{t}, then $\boldsymbol{E}_{t} Y=\boldsymbol{E} Y$.

Remark 5.7. These properties are exactly the same as in discrete time.

