Last time:

 $\tilde{P} \longrightarrow \tilde{E}_{n}(D_{n} S_{n+1}) = D_{n} S_{n}$ (Disconted stork is a Mg under P) Risk neutral Mecane.

Theorem 4.57. Let X_n represent the wealth of a portfolio at time n. The portfolio is self-financing portfolio if and only if the discounted wealth D_nX_n is a martingale under the risk neutral measure \tilde{P} .

Remark 4.58. Recall a portfolio is self financing if $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n - \Delta_n S_n)$ for some adapted process Δ_n .

- (1) That is, self-financing portfolios use only tradable assets when trading, and don't look into the future.
- (2) All replication has to be done using self-financing portfolios.

Proof of Proposition (4.1.) ~~ Security by & V at the N Then AFP at time $n \leq N$ is $V_{n} = \frac{1}{D_{n}} \left(\tilde{E}_{n} \left(D_{N} V_{N} \right) \right)$ Pf & Price by replication. Pind a self fin fant or ? Want XN = VN. Nealth at time Kn -> Xn ? Want XN = N.

Thus we know $\chi_n = A F P$. () Chane $X_N = V_N$ (2) Define $X_n = \int_{D_n} \tilde{E}_n(D_N X_N) = \int_{D_m} \tilde{E}_n(D_N V_N)$ D_nX_n is a Mg mole P 3) (loim: $P_{lo} = E_{n}(D_{n+1}X_{n+1}) \xrightarrow{W_{aut}} D_{n}X_{n}$

Know $\widetilde{E}_{N}(D_{n+1}X_{n+1}) = \widetilde{E}_{N}(\widetilde{E}_{N+1}(D_{N}X_{N}))$ $\begin{array}{l} \overbrace{}^{t_{0}}\underset{}{}^{t_{0}}$ Knows $X_N = V_N \implies \text{Replication} \implies \forall u \leq N, X_u = AFP.$

Example 4.59. Consider two stocks $\underline{\underline{S}}^1$ and $\underline{\underline{S}}^2$, $\underline{\underline{u}} = 2$, $\underline{\underline{d}} = 1/2$.

- ▷ The coin flips for S^1 are heads with probability 90%, and tails with probability 10%. || ▷ The coin flips for S^2 are heads with probability 99%, and tails with probability 1%.
 - ▷ Which stock do you like more?
 - \triangleright Amongst a call option for the two stocks with strike <u>K</u> and maturity <u>N</u>, which one will be priced higher?

Samp!
Founda for
$$\hat{f} = \frac{1+r-d}{r-d} \in \text{doesn't defaul on } \hat{f}$$
?

Remark 4.60. Even though the stock price changes according to a coin that flips heads with probability p_1 , the arbitrage free price is computed using conditional expectations using the risk neutral probability. So when computing $\tilde{E}_n V_N$, we use our new invented "risk neutral" coin that flips heads with probability \tilde{p}_1 and tails with probability \tilde{q}_1 .

Concepts that will be generalized to continuous time.

- Probability measure: Lebesgue_integral, and not a finite sum. Same properties.
- Filtration: Same intuition. No easy description.
- Conditional expectation: Same properties, no formula.
- Risk neutral measure: Formula for $\tilde{\boldsymbol{P}}$ is complicated (Girsanov theorem.)
- Everything still works because of of Theorem 4.57. Understanding why is harder.

5. Stochastic Processes

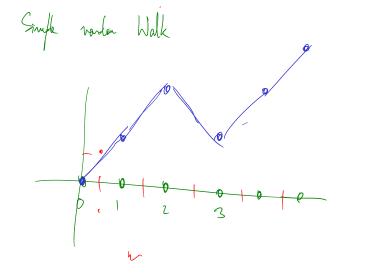
5.1. Brownian motion.

- Discrete time: Simple Random Walk.
 - $\triangleright X_n = \sum_{i=1}^{n} \xi_i$, where $\underline{\xi_i}$'s are i.i.d. $\underline{E}\xi_i = 0$, and Range $(\xi_i) = \{\pm 1\}$.
- Continuous time: Brownian motion.
 - $\begin{array}{l} \triangleright \ \underbrace{Y_t}_t = X_n + (\underline{t} n)\xi_{n+1} \ \text{if} \ t \in [n, n+1). \\ \triangleright \ \Bar{Rescale:} \ Y_t^\varepsilon = \sqrt{\varepsilon}Y_{t/\varepsilon}. \ (\text{Chose} \ \sqrt{\varepsilon} \ \text{factor to ensure Var}(Y_t^\varepsilon) \approx t.) \\ \triangleright \ \Let \ \underbrace{W_t}_t = \lim_{\varepsilon \to 0} Y_t^\varepsilon. \end{array}$

Definition 5.1 (Brownian motion). The process W above is called a Brownian motion.

- ▷ Named after Robert Brown (a botanist).
- ▷ Definition is intuitive, but not as convenient to work with.

Better way: E3; = 1 n vat essential.

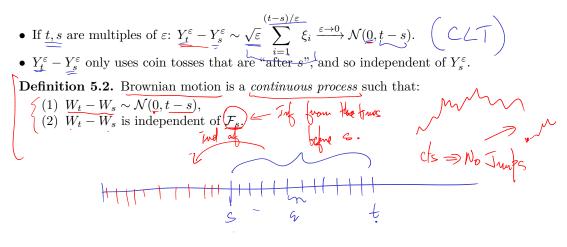


() Flip every 2 seconds DRechne step size lim 3 22 32 9.

-> Converto a "ets time RW" (Brownian motion) и

 $Y \quad (say \quad t/c \in \mathbb{N})$ $\frac{1}{4c} \quad \frac{1}{4c} \quad \frac{1}{4$ (Sun 'af t iid RV's mean D & Var 1) $V_{av}(Y_{t_{a}}) \approx = \frac{t}{\epsilon}$

 $\Rightarrow V_{av}\left(\sqrt{z} \quad \frac{Y_{av}}{Y_{c}}\right) = \left(\sqrt{z}\right)^{2} \quad \frac{t}{z} = t$



5.2. Sample space, measure, and filtration.

- Discrete time: Sample space Ω = {(ω₁,..., ω_N), ω₁ = outcome of the comtoss }
 View (ω₁,..., ω_N) as the trajectory of a random walk.
- Continuous time: Sample space $\Omega = C([0, \infty))$ (space of continuous functions). ▷ It's infinite. No probability mass function!

to is.

 \triangleright Mathematically impossible to define P(A) for all $A \subseteq \Omega$.

• Restrict our attention to
$$\underline{\mathcal{G}}$$
, a subset of some sets $A \subseteq \Omega$, on which \underline{P} can be defined.
 $\triangleright \ \overline{\mathcal{G}}$ is a σ -algebra. (Closed countable under unions, complements, intersections.)
• P is called a *probability measure* on $(\Omega, \overline{\mathcal{G}})$ if:
 $\triangleright P: \underline{\mathcal{G}} \to [0, 1], P(\emptyset) = 0, P(\Omega) = 1,$
 $\triangleright P(\underline{A} \cup \underline{B}) = P(A) + P(B)$ if $\underline{A}, B \in \mathcal{G}$ are disjoint.
 $\triangleright If \underline{A}_n \in \mathcal{G}, P(\bigcup_1 A_n) = \lim_{n \to \infty} P(A_n).$

Random variables are *measurable* functions of the sample space:
▷ Require {X ∈ A} ∈ G for every "nice" A ⊆ ℝ.
▷ E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3,4]} ∈ G, etc.
▷ Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.

$$\frac{1}{2} \exp\left[\chi(\omega) > 0\right] = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times$$

-

• Expectation is a Lebesgue Integral: Notation
$$\underline{EX} = \int_{\Omega} X(\omega) dP(\omega)$$
.
 \triangleright No simple formula.
 \triangleright If $\underline{X} = \sum_{a_i \mid A_i}$, then $\underline{EX} = \sum_{a_i \mid P(A_i)} A_i \in \mathbb{R}$ Are distington $A_i \in \mathbb{R}$ and $A_i \in \mathbb{R}$.
 $\models \mathbf{1}_A$ is the indicator function of A: $\mathbf{1}_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$
 $\models X = \mathbb{Z} \land_0 P(X = \alpha_i)$
 $P_i \in \mathbb{R}$ is the indicator function $A_i = \mathbf{1}_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$
 $\downarrow X = \alpha_i$
 $\downarrow X = \alpha$

Proposition 5.3 (Useful properties of expectation).

(hazy

- (Linearity) $\alpha, \beta \in \mathbb{R}, X, Y$ random variables, $E(\alpha X + \beta Y) = \alpha E X + \beta E Y$. (Positivity) If $X \ge 0$ then $EX \ge 0$. If $X \ge 0$ and EX = 0 then X = 0 almost surely.
- (3) (Layer Cake) If $X \ge 0$, $EX = \int_0^\infty P(X \ge t) dt$. $(P(\chi = 0) = 1)$.

(4) More generally, if φ is increasing, $\varphi(0) = 0$ then $E\varphi(X) = \int_0^\infty \varphi'(t) P(X \ge t) dt$. (5) (Unconscious Statistician Formula) If PDF of X is p, then $Ef(X) = \int_0^\infty f(x)p(x) dx$.

almost mely: even of prob 1.

- Filtrations:
 - \triangleright Discrete time: \mathcal{F}_n events described using the first *n* coin tosses.
 - \triangleright Coin tosses doesn't translate well to continuous time.
 - $\triangleright \text{ Discrete time } \underbrace{\text{try } \#2:}_{n.} \underbrace{\mathcal{F}_n}_{=} \text{ events described using the } \underbrace{trajectory}_{=} \text{ of the SRW up to time}$
 - \triangleright Continuous time: F_t = events described using the *trajectory* of the *Brownian motion* up to time t.

 - ▷ Discrete time: $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Continuous time: $\mathcal{F}_0 = \{A \in \mathcal{G} \mid \mathbf{P}(A) \in \{0, 1\}\}$.

fix t E R. A = (0, 0)AGR mice al set { W EAL $\{W_s \ge 0\} \in \{F_1, F_2, F_3\} \leftarrow Y_{es}$

5.3. Conditional expectation.

- Notation $\underline{E_t(X)} = \underline{E(X \mid \mathcal{F}_t)}$ (read as conditional expectation of X given $\underline{\mathcal{F}_t}$)
- No formula! But same intuition as discrete time.
- $\underline{E}_t X(\omega) =$ "average of \underline{X} over $\Pi_t(\underline{\omega})$ ", where $\Pi_t(\omega) = \{\omega' \in \Omega \mid \omega'(s) = \omega(s) \; \forall s \leq t\}.$
- Mathematically problematic: $P(\Pi_t(\omega)) = 0$ (but it still works out.)

(1) $\underline{E}_{t}X$ is $\underline{\mathcal{F}}_{t}$ -measurable. (2) For every $\underline{A} \in \underline{\mathcal{F}}_{t}$, $\int_{A} \underline{E}_{t}X dP = \int_{A} X dP$ (Ref. $\underline{X} \in A \in \mathcal{E}_{t}$) (2) For every $\underline{A} \in \underline{\mathcal{F}}_{t}$, $\int_{A} \underline{E}_{t}X dP = \int_{A} X dP$ (Ref. $\underline{A} \in \mathcal{E}_{t}X(\omega) \phi(\omega)$) nark 5.5. Choosing $\underline{A} = \Omega$ implies $\underline{E}(\underline{E}_{t}X) = \underline{E}X$. position 5.6 (Useful properties of conditional exact time) = $\underline{\sum} X(\omega) \phi(\omega)$ **Definition 5.4.** $E_t X$ is the unique random variable such that: Remark 5.5. Choosing $\underline{A} = \underline{\Omega}$ implies $\underline{E}(\underline{E}_t X) = \underline{E} X$. **Proposition 5.6** (Useful properties of conditional expectation). (1) If $\alpha, \beta \in \mathbb{R}$ are constants, X, Y, random variables $E_t(\alpha X + \alpha Y) = \alpha E_t X + \beta E_t Y$. (2) If $X \ge 0$, then $E_t X \ge 0$. Equality holds if and only if X = 0 almost surely. (3) (Tower property) If $0 \leq s \leq t$, then $\mathbf{E}_s(\mathbf{E}_t X) = \mathbf{E}_s X$. (4) If X is \mathcal{F}_t measurable, and Y is any random variable, then $E_t(XY) = XE_tY$. (5) If X is \mathcal{F}_t measurable, then $\mathbf{E}_t X = X$ (follows by choosing Y = 1 above). (6) If Y is independent of \mathcal{F}_t , then $\mathbf{E}_t Y = \mathbf{E} Y$.

Remark 5.7. These properties are exactly the same as in discrete time.