




4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and n � N . We define E(X | Fn) = EnX
to be the random variable given by

EnX(ω) =
�

xi∈Range(X)

xiP (X = xi | Πn(ω))

where Πn(ω) = {ω� ∈ Ω | ω�
1 = ω1, . . . , ω�

n = ωn}
Remark 4.29. The above formula does not generalize well to infinite probability spaces. We
will develop certain properties of En, and then only use those properties going forward.

Example 4.30. If we represent Ω as a tree, EnX can be computed by averaging over leaves.

Remark 4.31. EnX is the “best approximation” of X given only the first n coin tosses.





Proposition 4.32. The conditional expectation EnX defined by the above formula satisfies
the following two properties:

(1) EnX is an Fn-measurable random variable.
(2) For every A ∈ Fn,

�

ω∈A

EnX(ω)p(ω) =
�

ω∈A

X(ω)p(ω).

Remark 4.33. This property is used to define conditional expectations in the continuous time
setting. It turns out that there is exactly one random variable that satisfies both the above
properties; and thus we define EnX to be the unique random variable which satisfies both
the above properties.

Remark 4.34. Note, choosing A = Ω, we see E(EnX) = EX.



Proposition 4.35. (1) If X, Y are two random variables and α ∈ R, then En(X + αY ) =
EnX + αEnY .

(2) (Tower property) If m � n, then Em(EnX) = EmX.
(3) If X is Fn measurable, and Y is any random variable, then En(XY ) = XEnY .





Proposition 4.36. (1) If X is measurable with respect to Fn, then EnX = X.
(2) If X is independent of Fn then EnX = EX.

Remark 4.37. We say X is independent of Fn if for every A ∈ Fn and B ⊆ R, the events A
and {X ∈ B} are independent.

Example 4.38. If X only depends on the (n + 1)th, (n + 2)th, . . . , nth coin tosses and not the
1st, 2nd, . . . , nth coin tosses, then X is independent of Fn.



Proposition 4.39 (Independence lemma). If X is independent of Fn and Y is Fn-measurable,
and f : R → R is a function then

Enf(X, Y ) =
m�

i=1
f(xi, Y )P (X = xi) , where {x1, . . . , xm} = X(Ω) .



4.5. Martingales.

Definition 4.40. A stochastic process is a collection of random variables X0, X1, . . . , XN .

Example 4.41. Typically Xn is the wealth of an investor at time n, or Sn is the price of a
stock at time n.

Definition 4.42. A stochastic process is adapted if Xn is Fn-measurable for all n. (Non-
anticipating.)

Remark 4.43. Requiring processes to be adapted is fundamental to Finance. Intuitively,
being adapted forbids you from trading today based on tomorrows stock price. All processes
we consider (prices, wealth, trading strategies) will be adapted.

Example 4.44 (Money market). Let Y0 = Y0(ω) = a ∈ R. Define Yn+1 = (1 + r)Yn. (Here r
is the interest rate.)

Example 4.45 (Stock price). Let S0 ∈ R. Define Sn+1(ω) =
�

uSn(ω) ωn+1 = 1 ,

dSn(ω) ωn+1 = −1 .



Definition 4.46. We say an adapted process Mn is a martingale if EnMn+1 = Mn. (Recall
EnY = E(Y | Fn).)

Remark 4.47. Intuition: A martingale is a “fair game”.

Example 4.48 (Unbiased random walk). If ξ1, . . . , ξN are i.i.d. and mean zero, then Xn =�n
k=1 ξk is a martingale.





Remark 4.49. If M is a martingale, then for every m � n, we must have EmMn = Mm.

Remark 4.50. If M is a martingale then EMn = EM0 = M0.



4.6. Change of measure.
• Gambling in a Casino: If it’s a martingale, then on average you won’t make or lose money.
• Stock market: Bank always pays interest! Not looking for a “break even” strategy.
• Mathematical tool that helps us price securities: Find a Risk Neutral Measure.

� Discounted stock price is (usually) not a martingale.
� Invent a “risk neutral measure” which the discounted stock price is a martingale.
� Securities can be priced by taking a conditional expectation with respect to the risk

neutral measure. (That’s the meaning of Ẽn in Proposition 4.1.)



Definition 4.51. Let Dn = (1 + r)−n be the discount factor. (So Dn$ in the bank at time
0 becomes 1$ in the bank at time n.)

• Invent a new probability mass function p̃.
• Use a tilde to distinguish between the new, invented, probability measure and the old one.

� P̃ the probability measure obtained from the PMF p̃ (i.e. P̃ (A) =
�

ω∈A p̃(ω)).
� Ẽ, Ẽn conditional expectation with respect to P̃ (the new “risk neutral” coin)

Definition 4.52. We say P and P̃ are equivalent if for every A ∈ FN , P (A) = 0 if and
only if P̃ (A) = 0.

Definition 4.53. A risk neutral measure is an equivalent measure P̃ under which DnSn is
a martingale. (I.e Ẽn(Dn+1Sn+1) = DnSn.)

Remark 4.54. If there are more than one risky assets, S1, . . . , Sk, then we require DnS1
n,

. . . , DnSk
n to all be martingales under the risk neutral measure P̃ .

Remark 4.55. Proposition 4.1 says that any security with payoff VN at time N has arbitrage
free price Vn = 1

Dn
Ẽn(DN VN ) at time n. (Called the risk neutral pricing formula.)



Proposition 4.56. Let P̃ be an equivalent measure under which the coins are i.i.d. and
land heads with probability p̃1 and tails with probability q̃1 = 1 − p̃1.

(1) Under P̃ , we have Ẽn(Dn+1Sn+1) = p̃1u+q̃1d
1+r DnSn.

(2) P̃ is the risk neutral measure if and only if p̃1u+ q̃1d = 1+r. (Explicitly p̃1 = 1+r−d
u−d ,

and q̃1 = u−(1+r)
u−d .)





Theorem 4.57. Let Xn represent the wealth of a portfolio at time n. The portfolio is
self-financing portfolio if and only if the discounted wealth DnXn is a martingale under the
risk neutral measure P̃ .

Remark 4.58. Recall a portfolio is self financing if Xn+1 = ΔnSn+1 + (1 + r)(Xn − ΔnSn)
for some adapted process Δn.

(1) That is, self-financing portfolios use only tradable assets when trading, and don’t
look into the future.

(2) All replication has to be done using self-financing portfolios.






