2. Syllabus Overview

- Class website and full syllabus https://www.math.cmu.edu/~gautam/sj/teaching/2021-22/944-scalc-finance1
- TA's: Shukun Long <shukunl@andrew.cmu.edu>.
 Homework Due: 10:10AM Oct 28, Nov 4, 11, 23, 30, Dec 7
- Midterm: Tue, Nov 16, in class (May be delayed to Nov 18 if we have not covered Itô's formula in time.)
- Homework:
 - ▷ Good quality scans please! Use a scanning app, and not simply take photos. (I use Adobe Scan.)
- → 20% penalty if turned in within an hour of the deadline. 100% penalty after that.
 - Doe homework assignments can be turned in 24h late without penalty.
 - ▷ Bottom homework score is dropped from your grade (personal emergencies, interviews, other deadlines, etc.).
 - ▷ Collaboration is encouraged. Homework is not a test ensure you learn from doing the homework.
 - ▶ You must write solutions independently, and can only turn in solutions you fully understand.

Academic Integrity

- ▷ Zero tolerance for violations (automatic **R**).
- ▷ Violations include:
 - Not writing up solutions independently and/or plagiarizing solutions
 - Turning in solutions you do not understand.
- Seeking, receiving or providing assistance during an exam.
- ▶ All violations will be reported to the university, and they may impose additional penalties.
- Grading: 10% homework, 30% midterm, 60% final.

Course Outline.

- Review of Fundamentals Replication, arbitrage free pricing.
- Quick study of the multi-period binomial model.
 - ▷ Simple example of replication / arbitrage free pricing.
 - ▷ Understand conditional expectations. (Have an explicit formula.)
 - ▷ Understand measurablity / adaptedness. (Can be stated easily in terms of coin tosses that have / have not occurred.)
 - $\,\triangleright\,$ Understand risk neutral measures. Explicit formula!
- Develop tools to price securities in continuous time.
 - ▷ Brownian motion (not as easy as coin tosses)
 - ▷ Conditional expectation: No explicit formula!
 - ▷ Itô formula: main tool used for computation. Develop some intuition.
 - ▷ Measurablity / risk neutral measures: much more abstract. Complete description is technical. But we need a working knowledge.
 - ▶ Derive and understand the Black-Scholes formula.

3"

3. Replication and Arbitrage

3.1. Replication and arbitrage free pricing.

- Start with a *financial market* consisting of traded assets (stocks, bonds, money market, options, etc.)
- We model the price of these assets through random variables (stochastic processes).

• No Arbitrage Assumption:

In order to make money, you have to take risk. (Can't make something out of nothing.)

- \triangleright Mathematically: For any trading strategy such that $X_0 = 0$, and $X_n \geqslant 0$, you must also have $X_n = 0$ almost surely.
- \triangleright Equivalently: There doesn't exist a trading strategy with $X_0 = 0, X_n \geqslant 0$ and $P(X_n > 0) > 0$.
- Now consider a non-traded asset Y (e.g. an option). How do you price it?
- Arbitrage free price: If given the opportunity to trade Y at price V_0 , the market remains arbitrage free, then we say V_0 is the arbitrage free price of Y.

Arbitrage fue Price. Y -> Non traded asset. (e.g. Call option). - M.M. - Stake. -AFP: If girun the opportunity
to trade the asset at price Vo the market remains and free, then we call $V_0 =$ the art free frice.

- We will almost always find the arbitrage free price by replication. \triangleright Say the non-traded asset pays V_N at time N (e.g. call options).
 - > Try and replicate the payoff:
 - Start with X_0 dollars.
 - Use only traded assets and ensure that at maturity $X_N = V_N$.
 - \triangleright Then the arbitrage free price is uniquely determined, and must be X_0 .

Remark 3.1. The arbitrage free price is unique if and only if there is a replicating strategy! In this case, the arbitrage free price is exactly the initial capital of the replicating strategy.

If you replicate a seerly who some tracky start.

X = invival walth

X = warth at time;

(Reflication).

X = " " N. (X = V). Then AFP of the seemty must be Xo.

3.2. Example: One period Binomial model.

- Consider a market with a stock, and money market account.
- Interest rate for borrowing and lending is r. No transaction costs. Can buy and sell fractional quantities of the stock.
- Model assumption: Flip a coin that lands heads with probability $p_1 \in (0,1)$ and tails with probability $q_1 = 1 p_1$. Model $S_1 = uS_0$ if heads, and $S_1 = dS_0$ if tails. $\triangleright S_0$ is stock price at time 0 (known).
 - \triangleright S_1 is stock price after one time period (random).
 - $\triangleright u, d$ are model parameters (pre-supposed). Called the up and down factors. (Will always assume 0 < d < u.)

Proposition 3.2. There's no arbitrage in this model if and only if d < 1 + r < u.

Proof:

M.M. Stock:

Market.

indust vate V > -1

odel assumption

 $S_0 = price$

So Pu So

250

u, d, t, 9 > Model parators

20 of stock.

S= EdSo

if tails

Remak: No and in the model (=> d<1++< n. Intention: 1 If d > 1+7. -> Back: X -> (1+r) Xo. Stale: So > Suco 2) If It # > Revense. (3) Cack 2 chech that $d < (+r < u \Rightarrow) No art.$ >(1+12) QS

Ant Opportuta !

Proposition 3.3. Say a security pays V_1 at time 1 (V_1 can depend on whether the coin flip is heads or tails). The arbitrage free price at time 0 is given by

The replicating strategy holds $\Delta_0 = \frac{V_1(H) - V_1(T)}{(u - d)S_0}$ shares of stock at time 0.

Proof:

Secuty pay V, at time

(V) -> com dépard on outcome af first coin toss.)

Claim: AFP at timo $0:V_0=\frac{1}{1+r}\left(\frac{7}{2}V_1(H)+\frac{7}{2}V_1(T)\right)$.

Atssme no ant)

 $\dot{p} = \underbrace{1+r-d}_{u-d} \qquad \qquad \underbrace{\lambda g}_{=} = \underbrace{u-(1+r)}_{u-d}.$

Reason's. Ing 2 replicate Vach. (Xo-&AoSo).

Stack. A shones. Sant with X \$ $X_{i} = \text{wealth}$ at time $I = A_{i} S_{i} + (1+r)(X_{0} - A_{0} S_{0})$.

shower new price of stock.

Repliction: Want $X_{i} = V_{i}$ weather heads or tails to

$$V_{i}(H=X_{i}(H)) = \Delta_{o}(uS_{o}) + (I+r)(X_{o}-\Delta_{o}S_{o}) \quad (if heads).$$

$$V_{i}(H)=X_{i}(T) = \Delta_{o}(dS_{o}) + (I+r)(X_{o}-\Delta_{o}S_{o}) \quad (if tails).$$

2 Egns. (linear)
2 Vulvowns. (X & Do) Salme -> Gines
the famler.

4. Multi-Period Binomial Model.

- Same setup as the one period case 0 < d < 1 + r < u, and toss coins that land heads with probability p_1 and tails with probability q_1 .
- Except now the security matures at time N > 1.
- Stock price: $S_{n+1} = uS_n$ if n+1-th coin toss is heads, and $S_{n+1} = dS_n$ otherwise.
- To replicate it a security, we start with capital X_0 .
- Buy Δ_0 shares of stock, and put the rest in cash.
- Get $X_1 = \Delta_0 S_1 + (1+r)(X_0 \Delta_0 S_0)$.
- Repeat. Self <u>Financing Condition</u>: $X_{n+1} = \Delta_n S_{n+1} + (1+r)(X_n \Delta_n S_n)$.
- Adaptedness: Δ_n can only depend on outcomes of coin tosses before n!

Wealth evalution: Xo sintral walth. Ao > # shows of stock bought at time O. $X_1 \rightarrow \text{bealth at time } 1: X_1 = \Delta_0 S_1 + (1+1)(X_0 - \Delta_0 S_0)$ At time 1 : Chaze pos. Shold 1, showes of stock. $X_2 = \Delta_1 S_2 + (1+r)(X_1 - \Delta_1 S_1)$ Self binary $X_{n+1} = \Delta_n S_{n+1} + (1+r) (X_n - \Delta_n S_n) . K_{No extent}$ Cosch flow

Adaptedness: In earn only use outcome of coin tosses.

before (or at) time n.

-> NOT outcome of coin tosses ofthe time n.

1					
	Proposition 4.1. Consider a security that pays V_N at time N. Then for any $n \leq N$:				
		$V_n = \frac{1}{(1+r)} \tilde{E}_n V_N ,$	$\Delta_n = \frac{V_{n+1}(\omega_{n+1} = H) - V_{n+1}(\omega_{n+1})}{(u-d)S_n}$	$\frac{\omega_{n+1} = T)}{2}.$	
	• V_n is the arbitrage free price at time $n \leq N$.				
	• Δ_n is the number of shares held in the replication	ating portfolio at time n	(trading strategy).		

Question 4.2. Why does this work?

Question 4.3. What is \tilde{E}_n ? (It's different from E, and different from E_n).

A seenty with payaff VN can be replicated. APF aAFP at time M - Wealth of Rep part at time u

4.1. Quick review probability (finite Sample spaces). This is just a quick reminder, to fix notation. Read one of the references, or look over the prep material / videos for a more through treatment. The only thing we will cover in any detail is conditional expectation. Let $N \in \mathbb{N}$ be large (typically the maturity time of financial securities).					
Definition 4.4. The <i>sample space</i> is the set $\Omega = \{(\omega_1, \dots, \omega_N) \mid \text{each } \omega_i \text{ represents the outcome of a coin toss.}\}$					
\triangleright E.g. $\omega_i \in \{H, T\}$, or $\omega_i \in \{\pm 1\}$. (Each ω_i could also represent the outcome of the roll of a M sided die.)					
Definition 4.5. A sample point is a point $\omega = (\omega_1, \dots, \omega_N) \in \Omega$.					
\triangleright Each sample point represents the outcome of a sequence of all coin tosses from 1 to N .					
Definition 4.6. A probability mass function is a function $p: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} p(\omega) = 1$.					
Example 4.7. Typical example: Fix $p_1 \in (0,1)$, $q_1 = 1 - p_1$ and set $p(\omega) = p_1^{H(\omega)} q_1^{T(\omega)}$. Here $H(\omega)$ is the number of heads in the sequence $\omega = (\omega_1, \ldots, \omega_N)$, and $T(\omega)$ is the number of tails.					
Definition 4.8. An event is a subset of Ω . Define $P(A) = \sum_{\omega \in A} p(\omega)$.					
Example 4.9. $A\{\omega \in \Omega \mid \omega_1 = +1\}$. Check $P(A) = p_1$.					
$= \left\{ (\omega_1, \omega_2, \dots \omega_N) \middle \omega_i \in \{\pm 1\} \right\}$					
$\omega = (\omega_1, \dots \omega_N) \in \mathcal{I} \subset \mathcal{I} \subset \mathcal{I}$ sample point.					
PMF: $\beta : \Omega \rightarrow lo, \Omega$, $\Omega \rightarrow \omega \in \Omega$					

$$\begin{split} & p(\omega) \approx p_{\text{rob}} \text{ that this. particular seq of exocurs.} \\ & \underline{A} \subseteq \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)} \implies \text{called an event.} \\ & \underline{B} = \mathcal{Q} = \mathcal{Q} \text{ (any subset)}$$

 $P(A) = \text{prob that the ent } A \text{ occurs} = \sum_{\omega \in A} \phi(\omega)$.

4.2. Random Variables and Independence.

Definition 4.10. A random variable is a function $X: \Omega \to \mathbb{R}$.

Example 4.11. $X(\omega) = \begin{cases} 1 & \omega_2 = +1, \\ -1 & \omega_2 = -1, \end{cases}$ is a random variable corresponding to the outcome of the second coin toss.

Random Var. is for X: 52 -> R.

Definition 4.12. The expectation of a random variable X is $EX = \sum X(\omega)p(\omega)$.

Remark 4.13. Note if Range(X) = $\{x_1, \ldots, x_n\}$, then $EX = \sum X(\omega)p(\omega) = \sum_{i=1}^{n} x_i P(X = x_i)$. Remark 4.13. Note if Range(A) = $\{\omega_1, \dots, \omega_n\}$.

Definition 4.14. The variance of a random variable is $Var(X) = E(X - EX)^2$.

Remark 4.15. Note $Var(X) = EX^2 - (EX)^2$.

$$EX = \text{"mean"} = \text{"ange af X"}.$$

$$= \sum_{X \in Range(X)} x_i P(X = x_i).$$

Definition 4.16. Two events are independent if $P(A \cap B) = P(A)P(B)$.

Definition 4.17. The events A_1, \ldots, A_n are independent if for any sub-collection A_{i_1}, \ldots, A_{i_k} we have

$$P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_k}).$$

Remark 4.18. When n > 2, it is not enough to only require $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2) \cdots P(A_n)$

Definition 4.19. Two random variables are independent if P(X = x, Y = y) = P(X = x)P(Y = y) for all $x, y \in \mathbb{R}$.

Definition 4.20. The random variables X_1, \ldots, X_n are independent if for all $x_1, \ldots, x_n \in \mathbb{R}$ we have

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = P(X_1 = x_1)P(X_2 = x_2) \cdots P(X_n = x_n).$$

Remark 4.21. Independent random variables are uncorrelated, but not vice versa.

4.3. Filtrations.

Definition 4.22. We define a *filtration* on Ω as follows:

- $\triangleright \mathcal{F}_0 = \{\emptyset, \Omega\}.$
- $\triangleright \mathcal{F}_1$ = all events that can be described by only the first coin toss. E.g. $A = \{\omega \mid \omega_1 = +1\} \in \mathcal{F}_1$.
- $\triangleright \mathcal{F}_n$ = all events that can be described by only the first n coin tosses. E.g. $A = \{\omega \mid \omega_1 = 1, \omega_3 = -1, \omega_n = 1\} \in \mathcal{F}_n$.

Remark 4.23. Note $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_N = \mathcal{P}(\Omega)$.

Remark 4.24. If $A, B \in \mathcal{F}_n$, then so do $A^c, B^c, A \cap B, A \cup B, A - B, B - A$.

AB= { 2 not toss is tails } EE.

Finest on coin tosses.

Definition 4.25. Let $n \in \{0,, N\}$. We say	a random variable X is \mathcal{F}_n -measurable	e if $X(\omega)$ only depends on $\omega_1, \ldots, \omega_n$.
\triangleright Equivalently, for any $B \subseteq \mathbb{R}$, the event $\{X \in$	$\{i\in B\}\in \mathcal{F}_n.$	

Remark 4.26 (Use in Finance). For every n, the trading strategy at time n (denoted by Δ_n) must be \mathcal{F}_n measurable. We can not trade today based on tomorrows price. Example 4.27. If we represent Ω as a tree, \mathcal{F}_n measurablity can be visualized by checking constancy on leaves.

 $(D \times S)$ is \mathcal{E}_n meas if $X(\omega)$ only depths on ω_1 , ω_2 ... ω_n & not ω_{n+1} - ω_n . $(D \times S)$ is \mathcal{E}_n -meas. $(D \times S)$ For any $B \subseteq \mathbb{R}$, $\mathcal{E}_n \times \mathcal{E}_n \times \mathcal{E}$

3) Finance : In - always has to be fur - meas.

4.4. Conditional expectation.

Definition 4.28. Let X be a random variable, and $n \leq N$. We define $E(X \mid \mathcal{F}_n) = E_n X$ to be the random variable given by

$$\boldsymbol{E}_{n}X(\omega) = \sum_{x_{i} \in \text{Range}(X)} x_{i}\boldsymbol{P}(X = x_{i} \mid \Pi_{n}(\omega)), \quad \text{where} \quad \Pi_{n}(\omega) = \{\omega' \in \Omega \mid \omega'_{1} = \omega_{1}, \ldots, \omega'_{n} = \omega_{n}\}$$

Remark 4.29. E_nX is the "best approximation" of X given only the first n coin tosses.

Remark 4.30. The above formula does not generalize well to infinite probability spaces. We will develop certain properties of E_n , and then only use those properties going forward.

Example 4.31. If we represent Ω as a tree, E_nX can be computed by averaging over leaves.

$$E_{M}X(\omega) = \text{cond} \exp \alpha X \quad \text{ginen} \quad \mathcal{E}_{n}.$$

$$= E(X \mid \mathcal{E}_{n})$$

$$= \sum_{\alpha_{i} \in Raye} (X) P(X = x_{i} \mid \Pi_{n}(\omega))$$

$$= \sum_{\alpha_{i} \in Raye} (X) P(X = x_{i} \mid \Pi_{n}(\omega))$$

$$= \sum_{\alpha_{i} \in Raye} (X) P(X = x_{i} \mid \Pi_{n}(\omega))$$

$$= \sum_{\alpha_{i} \in Raye} (X) P(X = x_{i} \mid \Pi_{n}(\omega))$$