
CHAPTER 1

Brownian motion, and an Introduction to Modern
Probability

1. Scaling limit of random walks.

Our first goal is to understand Brownian motion, which is used to model “noisy
fluctuations” of stocks, and various other objects. This is named after the botanist
Robert Brown, who observed that the microscopic movement of pollen grains appears
random. Intuitively, Brownian motion can be thought of as a process that performs
a random walk in continuous time.

We begin by describing Brownian motion as the scaling limit of discrete random
walks. Let ξ1, ξ2, . . . , be a sequence of i.i.d. random variables which take on the
values ±1 with probability 1/2. Define the time interpolated random walk S(t) by
setting S(0) = 0, and
(1.1) S(t) = S(n) + (t− n)ξn+1 when t ∈ (n, n+ 1] .
Note S(n) =

∑n
1 ξi, and so at integer times S is simply a symmetric random walk

with step size 1.
Our aim now is to rescale S so that it takes a random step at shorter and

shorter time intervals, and then take the limit. In order to get a meaningful limit,
we will have to compensate by also scaling the step size. Let ε > 0 and define

(1.2) Sε(t) = αεS
( t
ε

)
,

where αε will be chosen below in a manner that ensures convergence of Sε(t) as
ε→ 0. Note that Sε now takes a random step of size αε after every ε time units.

To choose αε, we compute the variance of Sε. Note first
VarS(t) = btc+ (t− btc)2,

and1 consequently

VarSε(t) = α2
ε

(⌊ t
ε

⌋
+
( t
ε
−
⌊ t
ε

⌋)2)
.

In order to get a “nice limit” of Sε as ε→ 0, one would at least expect that VarSε(t)
converges as ε→ 0. From the above, we see that choosing

αε =
√
ε

immediately implies
lim
ε→0

VarSε(t) = t .

1Here bxc denotes the greatest integer smaller than x. That is, bxc = max{n ∈ Z | n 6 x}.

Theorem 1.1. The processes Sε(t)
def=
√
εS(t/ε) “converge” as ε → 0. The

limiting process, usually denoted by W , is called a (standard, one dimensional)
Brownian motion.

The proof of this theorem uses many tools from the modern theory of probability,
and is beyond the scope of this course. The important thing to take away from this
is that Brownian motion can be well approximated by a random walk that takes
steps of variance ε on a time interval of size ε.

While the above construction provides good intuition as to what Brownian
motion actually is, the scaling limit it is a somewhat unwieldy object to work with.
We instead introduce an intrinsic characterization of Brownian motion, and we will
shortly see that is both useful and mathematically convenient.

Definition 1.2. A Brownian motion is a continuous process that has stationary
independent increments.

Let us briefly explain the terms appearing in the above definition.
(1) A process (aka stochastic process) is simply a collection of random variables
{X(t) | 0 6 t <∞}. The index t usually represents time, and the process
is often written as {Xt | 0 6 t <∞} instead.

(2) A trajectory (aka sample path) of a process is the outcome of one particular
realization each of the random variables X(t) viewed as function of time.

(3) A process is called continuous if each of the trajectories are continuous.
That is, for every t > 0 we have

(1.3) lim
s→t

X(s) = X(t) .

(4) An process is said to have stationary increments if for every h > 0, the
distribution of X(t+ h)−X(t) does not depend on t.

(5) A process is said to have independent increments if for every finite sequence
of times 0 6 t0 < t1 · · · < tN , the random variables X(t0), X(t1)−X(t0),
X(t2)−X(t1), . . . , X(tN )−X(tN−1) are all jointly independent.

For the process S in (1.1), note that for n ∈ N, S(n + 1) − S(n) = Xn+1
whose distribution does not depend on n as the variables {ξi} were chosen to be
independent and identically distributed. Similarly, S(n + k) − S(n) =

∑n+k
n+1 ξi

which has the same distribution as
∑k

1 ξi and is independent of n.
However, if t ∈ R and is not necessarily an integer, S(t+k)−S(t) will in general

depend on t. So the process S (and also Sε) do not have stationary (or independent)
increments.

We claim, that the limiting process W does have stationary, independent,
normally distributed increments. Suppose for some fixed ε > 0, both s and t are
multiples of ε. In this case

Sε(t)− Sε(s) ∼
√
ε

bt−sc/ε∑
i=1

ξi
ε→0−−−→ N(0, t− s) ,

by the central limit theorem. If s, t aren’t multiples of ε as we will have in general,
the first equality above is true up to a remainder which can easily be shown to
vanish.
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2 1. BROWNIAN MOTION, AND AN INTRODUCTION TO MODERN PROBABILITY

The above heuristic argument suggests that the limiting process W (from
Theorem 1.1) satisfies W (t)−W (s) ∼ N(0, t− s). This certainly has independent
increments since W (t+ h)−W (t) ∼ N(0, h) which is independent of t. Moreover,
this also suggests that Brownian motion can be equivalently characterized as follows.

Definition 1.3. A Brownian motion is a continuous process W such that:
(1) W has independent increments, and
(2) For s < t, W (t)−W (s) ∼ N(0, σ2(t− s)).

Remark 1.4. A standard (one dimensional) Brownian motion is one for which
W (0) = 0 and σ = 1.

2. A brief review of probability

In modern probability we usually start with a probability triple (Ω,G,P ).
(1) Ω is a non-empty set called the sample space.
(2) G is a σ-algebra. This is a non-empty collection of events (subsets of Ω) of

which the probability is known.
(3) P is a probability measure. For any event A ∈ G, P (A) represents the

probability of the event A occurring.
A subtle, but important, point in this framework is the in most case G is usually

not the collection of all subsets of Ω, but only a collection of some subsets of Ω. In fact,
in most interesting examples, it is impossible to define the probability of arbitrary
subsets of Ω consistently (i.e. in a manner that satisfies the required properties
listed below), and we thus restrict ourselves to only talking about probabilities of
elements of elements of the σ-algebra G.

In order to be a probability space, the triple (Ω,G,P ) is required to satisfy
certain properties. First the σ-algebra G must satisfy the following:

(1) It must be closed under compliments. That is, if A ∈ G, then Ac ∈ G.
(2) It must be closed under countable unions. That us, if A1, A2, . . . are all

elements of G, then the union ∪∞1 Ai is also an element of G.
The precise mathematical definition of a σ-algebra is simply a non-empty collection
of sets that satisfies the above two properties. Of course, if G satisfies the above
properties then one can quickly deduce the following:

(3) The empty set ∅ and the whole space Ω are elements of G.
(4) If A1, A2, . . . are all elements of G, then the intersection ∩∞1 Ai is also an

element of G.
(5) If A,B are events in G, then A−B is also an event in G.

The reason for requiring the above properties is that we expect G is the collection
of events of which the probability is known (or of which the probability can be
deduced by performing repeated trials of some experiment). If you can deduce the
probability of an event A, you should certainly be able to deduce the probability
of Ac. Similarly, if you can deduce the probabilities of A,B, you should be able to
deduce the probability of A ∪B and A ∩B. The possibly surprising point above is
that we don’t require that G be closed under finite unions, but we require it is closed
under countable unions. The reason for this is that we would like our framework to
allow us to perform repeated trials of an experiment and take limits.

Next, we turn our attention to the probability measure P . We require that P
satisfies the following properties:

(1) For each A ∈ G, P (A) ∈ [0, 1]. Moreover, P (∅) = 0, and P (Ω) = 1.
(2) (Countable additivity) Given pairwise disjoint events A1, A2, · · · ∈ G, we

have

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) .

The above two properties are precisely the formal definition of a probability measure.
Recall that in probability we require that the probability of mutually exclusive
events add. The second property above is a generalization of this to countably many
events.

Using the above properties, one can quickly verify that P also satisfies the
following properties:

(1) P (Ac) = 1 − P (A). More generally, if A,B ∈ G with A ⊆ B, then
P (B −A) = P (B)− P (A).

(2) If A1 ⊆ A2 ⊆ A3 · · · and each Ai ∈ G then P (∪Ai) = limn→∞P (An).
(3) If A1 ⊇ A2 ⊇ A3 · · · and each Ai ∈ G then P (∩Ai) = limn→∞P (An).

We now describe random variables in the above context. In discrete probability,
random variables are usually just real valued functions defined on the sample space.
In our context, however, we need to be a bit more careful. If X is a random variable,
then one should always be able to assign probabilities to questions such as “Is X
positive?” or “Does X belong to the interval (0, 1)?”.

If X is simply a function from Ω to R, then to compute the probability that
X is positive, we should define A = {ω ∈ Ω |X(ω) > 0}, and then compute P (A).
This, however, is only possible if A ∈ G; and since G is usually not the entire power
set of Ω, we should take care to ensure that all questions we might ask about the
random variable X can be answered by only computing probabilities of events in G,
and not arbitrary subsets of Ω. For this reason, we define random variables as
follows.

Definition 2.1. A random variable is a G-measurable function X : Ω → R.
That is, a random variable is a function X : Ω→ R such that for every α ∈ R, the
set {ω ∈ Ω |X(ω) 6 α} is guaranteed to be an element of G. (Such functions are
also called G-measurable, measurable with respect to G, or simply measurable if the
σ-algebra in question is clear from the context.)

Remark 2.2. The argument ω is always suppressed when writing random
variables. That is, the event {ω ∈ Ω |X(ω) 6 α} is simply written as {X 6 α}.

Remark 2.3. Note for any random variable, {X > α} = {X 6 α}c which must
also belong to G since G is closed under complements. One can check that for every
α < β ∈ R the events {X < α}, {X > α}, {X > α}, {X ∈ (α, β)}, {X ∈ [α, β)},
{X ∈ (α, β]} and {X ∈ (α, β)} are all also elements of G.

Thus to (for instance) compute the chance that X lies strictly between two
real numbers α and β, we consider the event {X ∈ (α, β)}. By Remark 2.3 this
is guaranteed to be an element of G, and thus we can compute the probability of
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it using P . Hence, the quantity P ({X ∈ (α, β)}) is mathematically well defined,
and represents the chance that the random variable X takes values in the interval
(α, β). For brevity, we almost always omit the outermost curly braces and write
P (X ∈ (α, β)) for P ({X ∈ (α, β)}).

Remark 2.4. One can check that if X, Y are random variables then so are
X ± Y , XY , X/Y (when defined), |X|, X ∧ Y and X ∨ Y . In fact if f : R→ R is
any reasonably nice (more precisely, a Borel measurable) function, f(X) is also a
random variable.

Example 2.5. Given A ⊆ Ω, define indicator function of A by

1A(ω) def=
{

1 ω ∈ A ,
0 ω 6∈ A .

One can check that 1A is a (G-measurable) random variable if and only if A ∈ G.
Example 2.6. For M ∈ N, i ∈ {1, . . . ,M}, ai ∈ R and Ai ∈ G be such that

Ai ∩Aj = ∅ for i 6= j, and define

(2.1) X
def=

M∑
i=1

ai1Ai
.

Then X is a (G-measurable) random variable. (Such variables are called simple
random variables.)

The next important concept concerning random variables is that of expectation,
which we assume the reader is familiar with in the discrete setting. In the measure
theoretic framework, the expectation of a random variable is the Lebesgue integral,
and is denoted by2

EX
def=
∫

Ω
X dP .

The precise construction of the Lebesgue integral, however, is to lengthy to be
presented here, and we only present a brief summary.

If a random variable X only takes on finitely many values a1, . . . an, then the
expectation of X is given by

(2.2) EX
def=

n∑
i=1

aiP (X = ai) .

This means that for any simple random variable of the form (2.1), the expectation
is given by (2.2). For general random variables (i.e. random variables that are not
simple), we can compute by expressing them as a limit of simple random variables.
Namely, we can compute EX by

EX = lim
n→∞

E
( n2−1∑
k=−n2

k

n
1{ k

n6X< k+1
n }

)
= lim
n→∞

n2−1∑
k=−n2

k

n
P
(k
n
6 X <

k + 1
n

)
,

2If A ∈ G we define ∫
A

Y dP
def= E(1AY ) ,

and when A = Ω we will often omit writing it.

for instance.
The above description, however, is only of theoretical importance and is not

used to compute in practice. Here are a few computation rules and properties of
expectations that will be useful later.

(1) (Linearity) If α ∈ R and X,Y are random variables, then E(X + αY ) =
EX + αEY .

(2) (Positivity) If X > 0 almost surely,3 then EX > 0. Moreover, if X > 0
almost surely, EX > 0. Consequently, (using linearity) if X 6 Y almost
surely then EX 6 EY .

(3) (Layer Cake formula) If X > 0 almost surely, then

EX =
∫ ∞

0
P (X > t) dt .

More generally, if ϕ is a increasing differentiable function with ϕ(0) = 0
then

Eϕ(X) =
∫ ∞

0
ϕ′(t) P (X > t) dt .

(4) (Unconscious Statistician Formula) If the probability density function of
X is p, and f is any (Borel measurable) function, then

(2.3) Ef(X) =
∫ ∞
−∞

f(x)p(x) dx .

The proof of these properties goes beyond the scope of these notes. We do, how-
ever, make a few remarks. It turns out that the proof of positivity in this framework
is immediate, however the proof of linearity is surprisingly not as straightforward as
you would expect. While it is easy to verify linearity for simple random variables, for
general random variables, the proof of linearity requires an approximation argument.
The full proof of this involves either the dominated or monotone convergence theorem
which guarantee lim EXn = E limXn, under modest assumptions.

The layer cake formula can be proved by drawing a graph of X with Ω on the
horizontal axis. Now EX should be the “area under the curve”, which is usually
computed by slicing the region into vertical strips and adding up the area of each
strip. If, instead, you compute the area by slicing the region into horizontal strips,
you get exactly the layer cake formula!

Finally, unconscious statistician formula might already be familiar to you. In
fact, the reason for this somewhat unusual name is that many people use this result
“unconsciously” treating it as the definition, without realizing it is in fact a theorem
that requires proof. To elaborate further, introductory (non-measure theoretic)
probability courses usually stipulate that if a random variable X has density pX ,
then

EX =
∫ ∞
−∞

xpX(x) dx .

3By X > 0 almost surely, we mean that P (X > 0) = 1. More generally, we say an event
occurs almost surely if the probability of it occurring is 1.
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Thus if you set Y = f(X) for some function f , we should have

EY =
∫ ∞
−∞

ypY (y) dy .

If we could compute pY in terms of pX and f , you could substitute it in the above
formula, and obtain a formula for EY in terms of pX and f . Unfortunately, this
isn’t easy to do. Namely, if f isn’t monotone, it isn’t easy to write down pY in
terms of pX . It turns out, however, that even though we can’t easily write down pY
in terms of f and pX , we can prove that EY can be computed using (2.3).

Since discussing these results and proofs further at this stage will will lead us
too far astray, we invite the curious to look them up in any standard measure theory
book. The main point of this section was to introduce you to a framework which is
capable of describing and studying the objects we will need for the remainder of the
course.

We conclude this section by revisiting the notion of a continuous process defined
in the previous section. Recall, our definition so far was that a process is simply
a collection of random variables {X(t)}t>0, and a continuous process is a process
whose trajectories are continuous. In our context, a process can now be thought of
as a function

X : Ω× [0,∞)→ R .
For every fixed t, the function ω 7→ X(ω, t) is required to be a random variable (i.e.
measurable with respect to G). Since the ω is usually suppressed in probability, this
random variable is simply denoted by X(t).

The trajectory of X is now the slice of X for a fixed ω. Namely, for any fixed
ω ∈ Ω, the function t 7→ X(ω, t) is the trajectory of X. Saying a process has
continuous trajectories means that for every ω ∈ Ω, the trajectory t 7→ X(ω, t) is
continuous as a function of t. Explicitly, this means for every t > 0 and ω ∈ Ω we
have

lim
s→t

X(ω, s) = X(ω, s) .

Following our convention of “never writing ω”, this is exactly (1.3) as we had before.

3. Independence of random variables

Recall two events A,B are independent if P (A |B) = P (A). This is of course
immediately implies the multiplication law:

P (A ∩B) = P (A)P (B) .

The notion of independence for random variables requires that every event that is
observable from one is necessarily independent of every event that is observable
from the other.

For example, suppose X and Y are two random variables. For any a, b ∈ R, the
event {X ∈ (a, b)} can be observed using the random variable X. Similarly, any
c ∈ R, the event {Y > c} can be observed using the random variable Y . If X and
Y were independent, then the events {X ∈ (a, b)} would necessarily be independent
of the event {Y > c}. Of course, this is just an example and you can write down all
sorts of other events (e.g. X2 − eX < 15, or sin(Y + 3) < .5). No matter how you

do it, if X and Y are independent, then any event observable from X alone must
necessarily be independent of any event observable from Y alone.

Since the notion of “all events that can be observed from the random variable X”
will be useful later, we denote it by σ(X).

Definition 3.1. Let X be a random variable on (Ω,G,P ). We define the
σ-algebra generated by X to be the σ algebra obtained by only using events that
are observable using the random variable X.

One can mathematically prove that σ(X) is generated by the events {X 6 α}
for every α ∈ R. Namely, if a σ algebra contains the events {X 6 α} for every α ∈ R,
then it must necessarily contain all events observable through the random variable X.
In particular, it will contain events of the form {X ∈ [α, β)}, eX+1 < sinX, or any
other complicated formula that you can write down.

As mentioned above, the σ-algebra σ(X) represents all the information one can
obtain by observing X. To illustrate this, consider the following example: A card
is drawn from a shuffled deck, and you win a dollar if it is red, and lose one if it
is black. Now the likely hood of drawing any particular card is 1/52. However, if
you are blindfolded and only told the outcome of the game, you have no way to
determine that each gard is picked with probability 1/52. The only thing you will
be able to determine is that red cards are drawn as often as black ones.

This is captured by σ-algebra as follows. Let Ω = {1, . . . , 52} represent a deck
of cards, G = P(Ω), and define P (A) = card(A)/52. Let R = {1, . . . 26} represent
the red cards, and B = Rc represent the black cards. The outcome of the above
game is now the random variable X = 1R − 1B , and you should check that σ(X) is
exactly {∅, R,B,Ω}.

With this, we can now revisit the notion of two random variables being inde-
pendent.

Definition 3.2. We say the random variables X1, . . . , XN are independent if
for every i ∈ {1 . . . N} and every Ai ∈ σ(Xi) the events A1, . . . , AN are independent.

Remark 3.3. Recall, a collection of events A1, . . . , AN is said to be independent
if any sub collection {Ai1 , . . . , Aik} satisfies the multiplication law

P
( k⋂
i=1

Aik

)
=

d∏
i=1

P (Ai) .

Note that this is a stronger condition than simply requiring

P
(
A1 ∩A2 ∩ · · · ∩AN

)
= P (A1) P (A2) · · ·P (AN ) .

In practice, one never tests independence of random variables using the above
multiplication law.

Proposition 3.4. Let X1, . . . , XN be N random variables. The following are
equivalent:

(1) The random variables X1, . . . , XN are independent.
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(2) For every α1, . . . , αN ∈ R, we have

P
( N⋂
j=1
{Xj 6 αj}

)
=

N∏
j=1

P (Xj 6 αj)

(3) For every collection of bounded continuous functions f1, . . . , fN we have

E
[ N∏
j=1

fj(Xj)
]

=
N∏
j=1

Efj(Xj) .

(4) For every ξ1, . . . , ξN ∈ R we have

E exp
(
i

N∑
j=1

ξjXj

)
=

N∏
j=1

E exp(iξjXj) , where i =
√
−1 .

Remark 3.5. It is instructive to explicitly check each of these implications
when N = 2 and X1, X2 are simple random variables.

Remark 3.6. The intuition behind the above result is as follows: Since the events
{Xj 6 αj} generate σ(Xj), we expect the first two properties to be equivalent. Since
1(−∞,αj ] can be well approximated by continuous functions, we expect equivalence
of the second and third properties. The last property is a bit more subtle: Since
exp(a+ b) = exp(a) exp(b), the third clearly implies the last property. The converse
holds because of “completeness of the complex exponentials” or Fourier inversion,
and again a through discussion of this will lead us too far astray.

Remark 3.7. The third implication above implies that independent random
variables are uncorrelated. Namely, if X,Y are independent random variables, then
(3.1) E(XY ) = (EX)(EY ) .
The converse, is of course false. Namely if (3.1) holds, there is no reason we should
have

Ef(X)g(Y ) = Ef(X)Eg(Y ) ,
for every bounded continuous pair of functions f, g as required by the third part
in Proposition 3.4. However, if (X,Y ) is jointly normal and X,Y are uncorrelated,
then the normal correlation theorem guarantees that X,Y are independent.

Remark 3.8. If moment generating functions of the random variables are defined
in an interval around 0, then one can test independence using real exponentials
instead of the complex exponentials used in the last condition in Proposition 3.4.
Explicitly, in this case X1, . . . , XN are independent if and only if for every t1, . . . , tN
in some small interval containing 0 we have

E exp
( N∑
j=1

tjXj

)
=

N∏
j=1

E exp(tjXj) .

Example 3.9 (Covariance of Brownian motion). The independence of in-
crements allows us to compute covariances of Brownian motion easily. Sup-
pose W is a standard Brownian motion, and s < t. Then we know W (s) ∼
N(0, s), W (t) −W (s) ∼ N(0, t − s) and is independent of W (s). Consequently

(W (s),W (t)−W (s)) is jointly normal with mean 0 and covariance matrix ( s 0
0 t−s ).

This implies that (W (s),W (t)) is a jointly normal random variable. Moreover we
can compute the covariance by

EW (s)W (t) = EW (s)(W (t)−W (s)) + EW (s)2 = s .

In general if you don’t assume s < t, the above immediately implies EW (s)W (t) =
s ∧ t.

4. Conditional probability

Our next goal is to understand conditional probability, and we do it directly here
to help understanding. In the next section we will construct conditional expectations
independently, and the reader may choose to skip this section.

Suppose you have an incomplete deck of cards which has 10 red cards, and 20
black cards. Suppose 5 of the red cards are high cards (i.e. ace, king, queen, jack
or 10), and only 4 of the black cards are high. If a card is chosen at random, the
conditional probability of it being high given that it is red is 1/2, and the conditional
probability of it being high given that it is black is 1/5. Our aim is to encode both
these facts into a single entity.

We do this as follows. Let R,B denote the set of all red and black cards
respectively, and H denote the set of all high cards. A σ-algebra encompassing all
the above information is exactly

G def=
{
∅, R,B,H,Hc, R ∩H,B ∩H,R ∩Hc, B ∩Hc,

(R ∩H) ∪ (B ∩Hc), (R ∩Hc) ∪ (B ∩H),Ω
}

and you can explicitly compute the probabilities of each of the above events. A
σ-algebra encompassing only the color of cards is exactly

G def= {∅, R,B,Ω} .

Now we define the conditional probability of a card being high given the color
to be the random variable

P (H | C) def= P (H |R)1R + P (H |B)1B = 1
21R + 1

51B .

To emphasize:
(1) What is given is the σ-algebra C, and not just an event.
(2) The conditional probability is now a C-measurable random variable and

not a number.
To see how this relates to P (H |R) and P (H |B) we observe∫

R

P (H | C) dP
def= E

(
1RP (H | C)

)
= P (H |R) P (R) .

The same calculation also works for B, and so we have

P (H |R) = 1
P (R)

∫
R

P (H | C) dP and P (H |B) = 1
P (B)

∫
B

P (H | C) dP .
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Our aim is now to generalize this to a non-discrete scenario. The problem with
the above identities is that if either R or B had probability 0, then the above would
become meaningless. However, clearing out denominators yields∫

R

P (H | C) dP = P (H ∩R) and
∫
B

P (H | C) dP = P (H ∩B) .

This suggests that the defining property of P (H | C) should be the identity

(4.1)
∫
C

P (H | C) dP = P (H ∩ C)

for every event C ∈ C. Note C = {∅, R,B,Ω} and we have only checked (4.1) for
C = R and C = B. However, for C = ∅ and C = Ω, (4.1) is immediate.

Definition 4.1. Let (Ω,G,P ) be a probability space, and F ⊆ G be a σ-algebra.
Given A ∈ G, we define the conditional probability of A given F , denoted by P (A|F)
to be an F-measurable random variable that satisfies

(4.2)
∫
F

P (H | F) dP = P (H ∩ F ) for every F ∈ F .

Remark 4.2. Showing existence (and uniqueness) of the conditional probability
isn’t easy, and relies on the Radon-Nikodym theorem, which is beyond the scope of
this course.

Remark 4.3. It is crucial to require that P (H |F) is measurable with respect to
F . Without this requirement we could simply choose P (H |F) = 1H and (4.2) would
be satisfied. However, note that if H ∈ F , then the function 1F is F-measurable,
and in this case P (H | F) = 1F .

Remark 4.4. In general we can only expect (4.2) to hold for all events in F ,
and it need not hold for events in G! Indeed, in the example above we see that∫

H

P (H | C) dP = 1
2P (R ∩H) + 1

5P (B ∩H) = 1
2 ·

5
30 + 1

5 ·
4
30 = 11

100
but

P (H ∩H) = P (H) = 3
10 6=

11
100 .

Remark 4.5. One situation where you can compute P (A | F) explicitly is when
F = σ({Fi}) where {Fi} is a pairwise disjoint collection of events whose union is all
of Ω and P (Fi) > 0 for all i. In this case

P (A | F) =
∑
i

P (A ∩ Fi)
P (Fi)

1Fi .

5. Conditional expectation.

Conditional expectation arises when you have a random variable X, and want
to best approximate it using only a (strict) subset of events. Precisely, suppose
F ⊆ G is a σ-sub-algebra of G. That is, F is a σ-algebra, and every event in F is
also an event in G. Now to best approximate a (G-measurable) random variable X

using only events in F , one would like to find an F measurable random variable Z
that minimizes

E|X − Z|2 .
The minimizer is known as the conditional expectation of X given F , and denoted
by E(X | F). That is,

(5.1) E(X | F) def= arg min
{

E|X − Z|2
∣∣ Z is a G-measurable random variable

}
.

While the above provides good intuition to the notion of conditional expectation, it
is not as convenient to work with mathematically. For instance, the above requires
EX2 <∞, and we will often require conditional expectations of random variables
that do not have this property.

To motivate the other definition of conditional expectation, we use the following
example. Consider an incomplete deck of cards which has 10 red cards, of which 5
are high, and 20 black cards, of which 4 are high. Let X be the outcome of a game
played through a dealer who pays you $1 when a high card is drawn, and charges
you $1 otherwise. However, you are standing too far away from the dealer to tell
whether the card drawn was high or not. You can only tell the color, and whether
or not you won.

After playing this game often the only information you can deduce is that your
expected return is 0 when a red card is drawn and −3/5 when a black card is drawn.
That is, you approximate the game outcome X by the random variable

Y
def= 01R −

3
51B ,

where, as before R,B denote the set of all red and black cards respectively.
Note that the events you can deduce information about by playing this game

(through the dealer) are exactly elements of the σ-algebra C = {∅, R,B,Ω}. By
construction, that your approximation Y is C-measurable, and it is easy to verify
that
(5.2) Y = arg min{E(X − Z)2 | Z is a C-measurable random variable} .
That is Y = E(X | C) according to the definition (5.1). In this case, we can also
verify that Y has the same averages as X on all elements of C. That is, for every
C ∈ C, we have4

(5.3)
∫
C

Y dP =
∫
C

X dP .

It turns out that in general, one can show abstractly that any C measurable random
variable that satisfies (5.3), must in fact also be the minimizer in (5.2). We will
thus use (5.3) to define conditional expectation.

Definition 5.1. Let X be a G-measurable random variable, and F ⊆ G be a
σ-sub-algebra. We define E(X | F), the conditional expectation of X given F to be
a random variable such that:

(1) E(X | F) is F-measurable.

4Recall
∫
C
Y dP is simply E(1CY ). That is

∫
C
Y dP is the expectation of the random

variable which is Y on the event C, and 0 otherwise.
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(2) For every F ∈ F , we have the partial averaging identity:

(5.4)
∫
F

E(X | F) dP =
∫
F

X dP .

Remark 5.2. We can only expect (5.4) to hold for all events F ∈ F . In
general (5.4) will not hold for events G ∈ G − F .

Remark 5.3. An equivalent way of phrasing (5.4) is to require

(5.5) E(XY ) = E
(
E(X

∣∣ F)Y
)

for every F measurable random variable Y . As before, we can only expect (5.5)
to hold when Y is F measurable. In general (5.5) will not hold when Y is not F
measurable.

Remark 5.4. Choosing F = Ω we see EE(X | F) = EX.

Remark 5.5. More concretely, suppose Y is another random variable and
F = σ(Y ). Then it turns out that one can find a special (non-random) function g
such that E(X | F) = g(Y ). Moreover, the function g is characterized by the
property that

E
(
f(Y )X

)
= E

(
f(Y )g(Y )

)
.

for every bounded continuous function f .

Remark 5.6. Under mild integrability assumptions one can show that con-
ditional expectations exist. This requires the Radon-Nikodym theorem and goes
beyond the scope of this course. If, however, F = σ({Fi}) where {Fi} is a pairwise
disjoint collection of events whose union is all of Ω and P (Fi) > 0 for all i, then

E(X | F) =
∞∑
i=1

1Fi

P (Fi)

∫
Fi

X dP .

Remark 5.7. Once existence is established it is easy to see that conditional
expectations are unique. Namely, if Y is any F-measurable random variable that
satisfies ∫

F

Y dP =
∫
F

X dP for every F ∈ F ,

then Y = E(X | F ). Often, when computing the conditional expectation, we will
“guess” what it is, and verify our guess by checking measurablity and the above
partial averaging identity.

Proposition 5.8. If X is F-measurable, then E(X | F) = X. On the other
hand, if X is independent5 of F then E(X | F) = EX.

Proof. If X is F-measurable, then clearly the random variable X is both
F-measurable and satisfies the partial averaging identity. Thus by uniqueness, we
must have E(X | F) = X.

5We say a random variable X is independent of σ-algebra F if for every A ∈ σ(X) and B ∈ F
the events A and B are independent.

Now consider the case when X is independent of F . Suppose first X =
∑
ai1Ai

for finitely many sets Ai ∈ G. Then for any F ∈ F ,∫
F

X dP =
∑

aiP (Ai ∩ F ) = P (F )
∑

aiP (Ai) = P (F )EX =
∫
F

EX dP .

Thus the constant random variable EX is clearly F-measurable and satisfies the
partial averaging identity. This forces E(X | F) = EX. The general case when X
is not simple follows by approximation. �

The above fact has a generalization that is tremendously useful when computing
conditional expectations. Intuitively, the general principle is to average quantities
that are independent of F , and leave unchanged quantities that are F measurable.
This is known as the independence lemma.

Lemma 5.9 (Independence Lemma). Suppose X,Y are two random variables
such that X is independent of F and Y is F-measurable. Then if f = f(x, y) is any
function of two variables we have

E
(
f(X,Y )

∣∣ F) = g(Y ) ,

where g = g(y) is the function6 defined by

g(y) def= Ef(X, y) .

Remark. If pX is the probability density function of X, then the above says

E
(
f(X,Y )

∣∣ F) =
∫
R
f(x, Y ) pX(x) dx .

Indicating the ω dependence explicitly for clarity, the above says

E
(
f(X,Y )

∣∣ F)(ω) =
∫
R
f(x, Y (ω)) pX(x) dx .

Remark 5.10. Note we defined and motivated conditional expectations and
conditional probabilities independently. They are however intrinsically related:
Indeed, E(1A | F) = P (A | F), and this can be checked directly from the definition.

As we will see shortly, computing conditional expectations will be a very
important part of pricing securities. Most of the time, all that is required to
compute conditional expectations are the following properties.

Proposition 5.11. Conditional expectations satisfy the following properties.
(1) (Linearity) If X,Y are random variables, and α ∈ R then

E(X + αY | F) = E(X | F) + αE(Y | F) .
(2) (Positivity) If X 6 Y , then E(X | F) 6 E(Y | F) (almost surely).
(3) If X is F measurable and Y is an arbitrary (not necessarily F-measurable)

random variable then (almost surely)
E(XY | F) = XE(Y | F) .

6To clarify, we are defining a non-random function g = g(y) here when y ∈ R is any real
number. Then, once we compute g, we substitute in y = Y (= Y (ω)), where Y is the given random
variable.
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(4) (Tower property) If E ⊆ F ⊆ G are σ-algebras, then (almost surely)

E(X | E) = E
(

E(X | F)
∣∣∣ E) .

Proof. The first property follows immediately from linearity. For the second
property, set Z = Y −X and observe∫

E(Z|F)
E(Z | F) dP =

∫
E(Z|F)

Z dP > 0 ,

which can only happen if P (E(Z | F) < 0) = 0. The third property is easily checked
for simple random variables, and follows in general by approximating. The tower
property follows immediately from the definition. �

As an illustration, of how the above properties come in handy, we show how
they can be used to deduce (5.5).

Proposition 5.12. If F ⊆ G is a σ-sub-algebra, X is a G-measurable random
variable, and Y is an F-measurable random variable, then

E(XY ) = E
(
E(X

∣∣ F)Y
)

Proof. Using Remark 5.4 and then Proposition 5.11 part (3), we see
E(XY ) = E

(
E(XY | F)

)
= E

(
YE(X | F)

)
,

as desired. �

Finally we conclude this section by showing that the conditional expectation of
a random variable according to Definition 5.1 is precisely the minimizer as in (5.1).

Proposition 5.13. Let X be a square integrable G-measurable random variable,
and F ⊆ G be a σ-sub-algebra of G. Then amongst all F-measurable random
variables Z, the one that minimizes

E(X − Z)2

is precisely Z = E(X | F).

Proof. Since E(X | F) is known to be an F-measurable random variable, we
only need to show that for any (other) F-measurable random variable Z we have

E(X − Z)2 > E
(
(X −E(X

∣∣ F))2) .
To see this, note

E(X − Z)2 = E(X −E(X | F) + E(X | F)− Z)2

= E(X −E(X | F))2 + E((X | F)− Z)2

+ 2E
(

(X −E(X | F)︸ ︷︷ ︸
I

)(E(X | F)− Z︸ ︷︷ ︸
II

)
)

Since term II is F measurable, we can use (5.5) to replace X with E(X | F ) in
term I. This yields

E(X − Z)2 = E(X −E(X | F))2 + E((X | F)− Z)2

+ 2E
(

(E(X | F)−E(X | F))(E(X | F)− Z)
)

= E(X −E(X | F))2 + E((X | F)− Z)2 > E(X −E(X | F))2 ,

as desired. �

6. The Martingale Property

A martingale is “fair game”. Suppose you are playing a game and M(t) is your
cash stockpile at time t. As time progresses, you learn more and more information
about the game. For instance, in blackjack getting a high card benefits the player
more than the dealer, and a common card counting strategy is to have a “spotter”
betting the minimum while counting the high cards. When the odds of getting a
high card are favorable enough, the player will signal a “big player” who joins the
table and makes large bets, as long as the high card count is favorable. Variants of
this strategy have been shown to give the player up to a 2% edge over the house.

If a game is a martingale, then this extra information you have acquired can
not help you going forward. That is, if you signal your “big player” at any point,
you will not affect your expected return.

Mathematically this translates to saying that the conditional expectation of your
stockpile at a later time given your present accumulated knowledge, is exactly the
present value of your stockpile. Our aim in this section is to make this precise.

6.1. Adapted processes and filtrations. Let X be any stochastic process
(for example Brownian motion). For any t > 0, we’ve seen before that σ(X(t))
represents the information you obtain by observing X(t). Accumulating this over
time gives us the filtration. To introduce this concept, we first need the notion of a
σ algebra generated by a family of sets.

Definition 6.1. Given a collection of sets Aα, where α belongs to some (possibly
infinite) index set A, we define σ({Aα}) to be the smallest σ-algebra that contains
each of the sets Aα.

That is, if G = σ({Aα}), then we must have each Aα ∈ G. Since G is a σ-algebra,
all sets you can obtain from these by taking complements, countable unions and
countable intersections intersections must also belong to G.7 The fact that G is the
smallest σ-algebra containing each Aα also means that if G′ is any other σ-algebra
that contains each Aα, then G ⊆ G′.

Remark 6.2. The smallest σ-algebra under which X is a random variable
(under which X is measurable) is exactly σ(X). It turns out that σ(X) = X−1(B) =
{X ∈ B |B ∈ B}, where B is the Borel σ-algebra on R. Here B is the Borel σ-algebra,
defined to be the σ-algebra on R generated by all open intervals.

7Usually G contains much more than all countable unions, intersections and complements of
the Aα’s. You might think you could keep including all sets you generate using countable unions
and complements and arrive at all of G. It turns out that to make this work, you will usually have
to do this uncountably many times!

This won’t be too important within the scope of these notes. However, if you read a rigorous
treatment and find the authors using some fancy trick (using Dynkin systems or monotone classes)
instead of a naive countable unions argument, then the above is the reason why.
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Definition 6.3. Given a stochastic process X, the filtration generated by X is
the family of σ-algebras {FXt | t > 0} where

FXt
def= σ

(⋃
s6t

σ(Xs)
)
.

That is, FXt is all events that can be observed using only the random variables
Xs when s 6 t. Clearly each FXt is a σ-algebra, and if s 6 t, FXs ⊆ FXt . A family
of σ-algebras with this property is called a filtration.

Definition 6.4. A filtration is a family of σ-algebras {Ft | t > 0} such that
whenever s 6 t, we have Fs ⊆ Ft.

In our case, the filtration we work with will most often be the Brownian filtration,
i.e. the filtration generated by Brownian motion. However, one can (and often needs
to) consider more general filtrations. In this case the intuition we use is that the
σ-algebra Ft represents the information accumulated up to time t (i.e. all events
whose probabilities can be deduced up to time t). When given a filtration, it is
important that all stochastic processes we construct respect the flow of information,
and do not look into the future. This is of course natural: trading / pricing strategies
can not rely on the price at a later time, and gambling strategies do not know the
outcome of the next hand. Mathematically this property is called adapted, and is
defined as follows.

Definition 6.5. A stochastic process X is said to be adapted to a filtration {Ft |
t > 0} if for every t the random variable X(t) is Ft measurable (i.e. {X(t) 6 α} ∈ Ft
for every α ∈ R, t > 0).

Clearly a process X is adapted with respect to the filtration it generates {FXt }.

6.2. Martingales. Recall, a martingale is a “fair game”. Using conditional
expectations, we can now define this precisely.

Definition 6.6. A stochastic process M is a martingale with respect to a
filtration {Ft} if:

(1) M is adapted to the filtration {Ft}.
(2) For any s < t we have E(M(t) | Fs) = M(s), almost surely.

Remark 6.7. A sub-martingale is an adapted process M for which we have
E(M(t) |Fs) >M(s), and a super-martingale if E(M(t) |Fs) 6M(s). Thus EM(t)
is an increasing function of time if M is a sub-martingale, constant in time if M is
a martingale, and a decreasing function of time if M is a super-martingale.

Remark 6.8. It is crucial to specify the filtration when talking about martin-
gales, as it is certainly possible that a process is a martingale with respect to one
filtration but not with respected to another. For our purposes the filtration will
almost always be the Brownian filtration (i.e. the filtration generated by Brownian
motion).

Example 6.9. Let {Ft} be a filtration, F∞ = σ(∪t>0Ft), and X be any F∞-
measurable random variable. The process M(t) def= E(X∞ | Ft) is a martingale with
respect to the filtration {Ft}.

6.3. The martingale property of Brownian motion. In discrete time a
random walk is a martingale, so it is natural to expect that in continuous time
Brownian motion is a martingale as well.

Theorem 6.10. Let W be a Brownian motion, Ft = FWt be the Brownian
filtration. Brownian motion is a martingale with respect to this filtration.

Proof. By independence of increments, W (t)−W (s) is certainly independent
of W (r) for any r 6 s. Since Fs = σ(∪r6sσ(W (r))) we expect that W (t)−W (s) is
independent of Fs. Consequently

E(W (t) | Fs) = E(W (t)−W (s) | Fs) + E(W (s) | Fs) = 0 +W (s) = W (s) . �

Theorem 6.11. Let W be a standard Brownian motion (i.e. a Brownian motion
normalized so thatW (0) = 0 and Var(W (t)) = t). For any C1,2

b function8 f = f(t, x)
the process

M(t) def= f(t,W (t))−
∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

is a martingale (with respect to the Brownian filtration).

Proof. This is an extremely useful fact about Brownian motion follows quickly
from the Itô formula, which we will discuss later. However, at this stage, we can
provide a simple, elegant and instructive proof as follows.

Adaptedness of M is easily checked. To compute E(M(t) | Fr) we first observe

E
(
f(t,W (t))

∣∣ Fr) = E
(
f(t, [W (t)−W (r)] +W (r))

∣∣ Fr).
Since W (t)−W (r) ∼ N(0, t− r) and is independent of Fr, the above conditional
expectation can be computed by

E
(
f(t, [W (t)−W (r)] +W (r))

∣∣ Fr) =
∫
R
f(t, y +W (r))G(t− r, y) dy ,

where
G(τ, y) = 1√

2πτ
exp
(−y2

2τ

)
is the density of W (t)−W (r).

Similarly

E
(∫ t

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds
∣∣∣ Fr)

=
∫ r

0

(
∂tf(s,W (s)) + 1

2∂
2
xf(s,W (s))

)
ds

+
∫ t

r

∫
R

(
∂tf(s, y +W (r)) + 1

2∂
2
xf(s, y +W (r))

)
G(s− r, y) dy ds

8Recall a function f = f(t, x) is said to be C1,2 if it is C1 in t (i.e. differentiable with respect
to t and ∂tf is continuous), and C2 in x (i.e. twice differentiable with respect to x and ∂xf , ∂2

xf

are both continuous). The space C1,2
b

refers to all C1,2 functions f for which and f , ∂tf , ∂xf , ∂2
xf

are all bounded functions.
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Hence

E(M(t) | Fr)−M(r) =
∫
R
f(t, y +W (r))G(t− r, y) dy

−
∫ t

r

∫
R

(
∂tf(s, y +W (r)) + 1

2∂
2
xf(s, y +W (r))

)
G(s− r, y) ds

− f(r,W (r)) .

We claim that the right hand side of the above vanishes. In fact, we claim the
(deterministic) identity

f(r, x) =
∫
R
f(t, y + x)G(t− r, y) dy

−
∫ t

r

∫
R

(
∂tf(s, y + x) + 1

2∂
2
xf(s, y + x))

)
G(s− r, y) dy ds

holds for any function f and x ∈ R. For those readers who are familiar with PDEs,
this is simply the Duhamel’s principle for the heat equation. If you’re unfamiliar with
this, the above identity can be easily checked using the fact that ∂τG = 1

2∂
2
yG and

integrating the first integral by parts. We leave this calculation to the reader. �

6.4. Stopping Times. For this section we assume that a filtration {Ft} is
given to us, and fixed. When we refer to process being adapted (or martingales),
we implicitly mean they are adapted (or martingales) with respect to this filtration.

Consider a game (played in continuous time) where you have the option to walk
away at any time. Let τ be the random time you decide to stop playing and walk
away. In order to respect the flow of information, you need to be able to decide
weather you have stopped using only information up to the present. At time t, event
{τ 6 t} is exactly when you have stopped and walked away. Thus, to respect the
flow of information, we need to ensure {τ 6 t} ∈ Ft.

Definition 6.12. A stopping time is a function τ : Ω→ [0,∞) such that for
every t > 0 the event {τ 6 t} ∈ Ft.

A standard example of a stopping time is hitting times. Say you decide to
liquidate your position once the value of your portfolio reaches a certain threshold.
The time at which you liquidate is a hitting time, and under mild assumptions on
the filtration, will always be a stopping time.

Proposition 6.13. Let X be an adapted continuous process, α ∈ R and τ be
the first time X hits α (i.e. τ = inf{t > 0 |X(t) = α}). Then τ is a stopping time
(if the filtration is right continuous).

Theorem 6.14 (Doob’s optional sampling theorem). If M is a martingale and
τ is a bounded stopping time. Then the stopped process Mτ (t) def= M(τ ∧ t) is also a
martingale. Consequently, EM(τ) = EM(τ ∧ t) = EM(0) = EM(t) for all t > 0.

Remark 6.15. If instead of assuming τ is bounded, we assume Mτ is bounded
the above result is still true.

The proof goes beyond the scope of these notes, and can be found in any
standard reference. What this means is that if you’re playing a fair game, then you
can not hope to improve your odds by “quitting when you’re ahead”. Any rule by
which you decide to stop, must be a stopping time and the above result guarantees
that stopping a martingale still yields a martingale.

Remark 6.16. Let W be a standard Brownian motion, τ be the first hitting
time of W to 1. Then EW (τ) = 1 6= 0 = EW (t). This is one situation where the
optional sampling theorem doesn’t apply (in fact, Eτ =∞, and W τ is unbounded).

This example corresponds to the gambling strategy of walking away when you
make your “million”. The reason it’s not a sure bet is because the time taken to
achieve your winnings is finite almost surely, but very long (since Eτ =∞). In the
mean time you might have incurred financial ruin and expended your entire fortune.

Suppose the price of a security you’re invested in fluctuates like a martingale
(say for instance Brownian motion). This is of course unrealistic, since Brownian
motion can also become negative; but let’s use this as a first example. You decide
you’re going to liquidate your position and walk away when either you’re bankrupt,
or you make your first million. What are your expected winnings? This can be
computed using the optional sampling theorem.

Problem 6.1. Let a > 0 and M be any continuous martingale with M(0) =
x ∈ (0, a). Let τ be the first time M hits either 0 or a. Compute P (M(τ) = a) and
your expected return EM(τ).
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